DOI QR코드

DOI QR Code

Cancer incidence and mortality estimations in Busan by using spatial multi-level model

공간 다수준 분석을 이용한 부산지역 암발생 및 암사망 추정

  • Ko, Younggyu (Department of Statistics, Pukyong National University) ;
  • Han, Junhee (Division of Biostatistics, Pusan National University Yangsan Hospital) ;
  • Yoon, Taeho (Department of Occupational and Preventive Medicine, Pusan National University School of Medicine) ;
  • Kim, Changhoon (Department of Occupational and Preventive Medicine, Pusan National University School of Medicine) ;
  • Noh, Maengseok (Department of Statistics, Pukyong National University)
  • 고영규 (부경대학교 통계학과) ;
  • 한준희 (양산부산대학교 병원) ;
  • 윤태호 (부산대학교 의과전문대학원) ;
  • 김창훈 (부산대학교 의과전문대학원) ;
  • 노맹석 (부경대학교 통계학과)
  • Received : 2016.07.14
  • Accepted : 2016.09.10
  • Published : 2016.09.30

Abstract

Cancer is a typical cause of death in Korea that becomes a major issue in health care. According to Cause of Death Statistics (2014) by National Statistical Office, SMRs (standardized mortality rates) in Busan were counted as the highest among all cities. In this paper, we used data of Busan Regional Cancer Center to estimate the extent of the cancer incidence rate and cancer mortality rate. The data are considered in small areas of administrative units such as Gu/Dong from years 2003 to 2009. All cancer including four major cancers (stomach cancer, colorectal cancer, lung cancer, liver cancer) have been analyzed. We carried out model selection and parameter estimation using spatial multi-level model incorporating a spatial correlation. For the spatial effects, CAR (conditional autoregressive model) has been assumed.

한국인의 전형적인 사망 원인인 암은 보건 분야에서 중요한 문제이다. 통계청이 제시한 Cause of death statistics (2014)에 따르면, 7대 광역시 중 부산의 표준화 사망률 (standardized mortality rate; SMR)이 가장 높게 나타났다. 이 논문에서는 부산지역암센터의 암등록자료를 이용하여 암발생률과 암사망률의 정도를 추정하고자 한다. 2003~2009년 자료를 대상으로 구/동과 같은 소지역 단위를 고려하였으며, 전체 암과 4대 주요암 (위암, 대장암, 폐암, 간암)에 대해 분석하였다. 공간 상관성을 고려한 공간 다수준 모형을 통해 모형 선택과 모수 추정을 수행하였다. 공간 효과에 대해서는 조건부 자기회귀 (conditional autoregressive; CAR)를 가정하였으며 WinBUGS를 이용하였다. 분석의 결과로 각 지역에서의 공간 효과를 어떻게 분석하고 해석하는지 제시하였다.

Keywords

References

  1. Ahn, D., Han, J., Yoon, T., Kim, C. and No, M. (2015). Small area estimations for disease mapping by using spatial model. Journal of the Korean Data & Information Science Society, 26, 101-109. https://doi.org/10.7465/jkdi.2015.26.1.101
  2. Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data, CRC Press, Boca Raton, Florida.
  3. Berg, A., Meyer, R. and Yu, J. (2004). Deviance information criterion for comparing stochastic volatility models. Journal of Business & Economic Statistics, 22, 107-120. https://doi.org/10.1198/073500103288619430
  4. Britt, H. R., Carlin, B. P., Toomey, T. L. and Wagenaar, A. C. (2005). Neighborhood level spatial analysis of the relationship between alcohol outlet density and criminal violence. Environmental and Ecological Statistics, 12, 411-426. https://doi.org/10.1007/s10651-005-1518-3
  5. Brooks, S. P. and Gelman A. (1998). General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
  6. Chandra, H., Salvati, N. and Chambers, R. (2007). Small area estimation for spatially correlated populations-a comparison of direct and indirect model-based methods. Statistics in Transition, 8, 887-906.
  7. Choi, M. H., Cheong, K. S., Cho, B. M., Hwang, I. K., Kim, C. H. and Kim, M. H., et al. (2011). Deprivation and mortality at the town level in Busan, Korea: An ecological study. Journal of Preventive Medicine and Public Health, 44, 242-248. https://doi.org/10.3961/jpmph.2011.44.6.242
  8. Christensen, O. F. and Waagepetersen, R. (2002). Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics, 58, 280-286. https://doi.org/10.1111/j.0006-341X.2002.00280.x
  9. Clayton, D. and Kaldor, J. (1987). Empirical bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43, 671-681. https://doi.org/10.2307/2532003
  10. Ghosh, M., Natarajan, K., Stroud, T. W. F. and Carlin, B. P. (1998). Genearlized linear models for small-area estimation. Journal of the American Statistical Association, 93, 273-282. https://doi.org/10.1080/01621459.1998.10474108
  11. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for gibbs sampling. Applied Statistics. Journal of the Royal Statistical Society, 41, 337-348.
  12. Kim, K., Noh, M. and Ha, I. (2011). A study using HGLM on regional difference of the dead due to injuries. Journal of the Korean Data & Information Science Society, 22, 137-148.
  13. Lee, W. J. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
  14. Linde, A. (2005). DIC in variable selection. Statistica Neerlandica, 59, 45-56. https://doi.org/10.1111/j.1467-9574.2005.00278.x
  15. Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17-23. https://doi.org/10.1093/biomet/37.1-2.17
  16. Pfeffermann, D. (2002). Small area estimation-new developments and directions. International Statistical Review, 70,125-143.
  17. Rao, J. N. (2003). Small area estimation, Wiley Online Library, Ottawa, Canada.
  18. Tiefelsdorf, M. (2000). The exact distribution of moran's I , Lecture Notes in Earth Sciences, Springer Verlag, Berlin, 87, 75-88.
  19. Townsend, P. (1987). Deprivation. Journal Social Policy, 16, 125-146. https://doi.org/10.1017/S0047279400020341
  20. Walsh, B. (2004). Markov Chain Monte Carlo and Gibbs sampling, Available http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs.pdf.