DOI QR코드

DOI QR Code

Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W

Acinetobacter sp. B-W의 2, 3-dihydroxybenzoic acid 생산과 항생제 저항성에 미치는 플라스미드 제거 효과

  • Kim, Kyoung-Ja (Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Kim, Jin-Woo (Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Yang, Yong-Joon (Department of Plant and Food Science, Sangmyung University)
  • 김경자 (순천향대학교 생명시스템학과) ;
  • 김진우 (순천향대학교 생명시스템학과) ;
  • 양용준 (상명대학교 식물식품공학과)
  • Received : 2016.07.27
  • Accepted : 2016.08.08
  • Published : 2016.09.30

Abstract

Acinetobacter sp. B-W producing siderophore, 2, 3-dihydroxybenzoic acid (DHB) was analyzed for plasmid content. Strain B-W harbored plasmid of 20 kb in size. Growth at $43^{\circ}C$ was effective in producing mutant cured of plasmid of strain B-W. This mutant lost the ability to produce 2, 3-DHB. Formation of siderophore halos on the chrome azurol S (CAS) agar medium was not detected by cured strain B-W. pHs of supernatants of wild type strain B-W and cured mutant grown in glucose and $MnSO_4$ containing medium at $28^{\circ}C$ for 3 days were 4.5 and 8.5, respectively. Antibiotic resistance against ampicillin, actinomycin D, bacitracin, lincomycin, and vancomycin was lost in cured mutant. Plasmid curing of strain B-W resulted in drastic reduction of minimal inhibitory concentration (MIC) of several antibiotics. E. coli $DH5{\alpha}$ was transformed with plasmid isolated from strain B-W. The transformant E. coli $DH5{\alpha}$ harbored a plasmid of the same molecular size as that of the donor plasmid. Transformant E. coli $DH5{\alpha}$ produced 2, 3-DHB and contained antibiotic resistant ability. Thus a single plasmid of 20 kb seemed to be involved in 2, 3-DHB production. Genes encoding resistance to antibiotics were also supposed to be located on this plasmid.

시드로포어인 2, 3-dihydroxybenzoic acid (DHB)를 생산하는 Acinetobacter sp. B-W의 플라스미드를 분석한 결과, 20 kb 크기의 플라스미드를 함유하였다. 배양 온도 $43^{\circ}C$ 가 플라스미드가 제거된 돌연변이체 생산에 효과적이었다. 이 돌연변이체는 2,3-DHB 생산 능력을 소실하였으며, chrome azurol S (CAS) 아가 배지에서 시드로포어 생산이 검출되지 않았다. 포도당과 황산 망간을 함유한 배지에서 $28^{\circ}C$로 3일간 배양한 B-W 원 균주와 돌연변이체의 배양 상등액의 pH는 각각 4.5와 8.5로 나타났다. 돌연변이체에서는 ampicillin, actinomycin D, bacitracin, lincomycin과 vancomycin 같은 항생제에 대한 저항성이 사라졌으며, 이러한 항생제에 대한 최소 억제 농도(MIC)가 급격하게 감소하였다. B-W 균주에서 분리한 플라스미드로 대장균을 형질전환시킨 결과, 원 균주와 같은 크기의 플라스미드가 이 형질전환 대장균에서 발견되었다. 플라스미드가 제거된 돌연변이체에서는 플라스미드가 발견되지 않았다. 20 kb 크기의 플라스미드에 2,3-DHB 생산 유전자와 여러 항생제 저항성 유전자가 자리잡고 있는 것으로 추정된다.

Keywords

References

  1. Arnow, L.E. 1937. Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 18, 531-537.
  2. Bauer, A.W., Kirby, W.M.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  3. Chen, Q., Actis, L.A., Tolmasky, M.E., and Crosa, J.H. 1994. Chromosome-mediated 2, 3-dihydroxybenzoic acid is a precursor in the biosynthesis of the plasmid mediated siderophore anguibactin in Vibrio anguillarum. J. Bacteriol. 176, 4226-4234. https://doi.org/10.1128/jb.176.14.4226-4234.1994
  4. Clinical and Laboratory Standards Institute. 2010. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement M100-S20. CLSI, Wayne, PA, USA.
  5. Driss, F., Tounsi, S., and Jaoua, S. 2011. Relationship between plasmid loss and gene expression in Bacillus thuringiensis. Curr. Microbiol. 62, 1287-1293. https://doi.org/10.1007/s00284-010-9857-1
  6. Elias, H.M., Qader, M.K., and Salih, W.M. 2013. Determination of plasmid DNA role in multidrug resistant Pseudomonas aeruginosa clinical isolates. Int. J. Microbiol. Immunol. Res. 1, 80-86.
  7. Gonzalez, J.M., Dulmage, H.T., and Carlton, B.C. 1981. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5, 351-365. https://doi.org/10.1016/0147-619X(81)90010-X
  8. Jalal, M.A.F., Hossain, M.B., Helm, D., Sanders, J., Acis, L.A., and Crosa, J.H. 1989. Structure of anguibactin, a uique plasmid related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc. 111, 292-296. https://doi.org/10.1021/ja00183a044
  9. Kenchappa, P. and Sreenivasmurthy, B. 2003. Simplified panel of assimilation tests for identification of Acinetobacter species. Indian J. Pathol. Microbiol. 246, 700-706.
  10. Kim, K.J., Lee, J.H., and Yang, Y.J. 2015. Temperature dependent 2, 3-dihydroxybenzoic acid production in Acinetobacter sp. B-W. Korean J. Microbiol. 51, 249-255. https://doi.org/10.7845/kjm.2015.5033
  11. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1989. Molecular cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  12. Meyers, J.A., Sanchez, D., Elwell, L.P., and Falkow, S. 1976. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J. Bacteriol. 123, 1529-1537.
  13. Miethke, M. and Marahiel, M.A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413-451. https://doi.org/10.1128/MMBR.00012-07
  14. Saranathan, R., Sudhakar, P., Karthika, R.U., Singh, S.K., Shashikala, P., Kanungo, R., and Prashanth, K. 2014. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids. Indian J. Med. Res. 140, 262-270.
  15. Schwyn, R. and Neiland, J.B. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  16. Steers, E., Foltz, E.L., Graves, B.S., and Riden, J. 1959. An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot. Chemother. (Northfield) 9, 307-311.
  17. Wandersman, C. and Delepelaire, P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611-647. https://doi.org/10.1146/annurev.micro.58.030603.123811
  18. Wencewicz, T., Mollmann, U., Long, T., and Miller, M. 2009. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse" antibiotics and synthetic desferridanoxamine antibiotic conjugates. BioMetals 22, 633-648. https://doi.org/10.1007/s10534-009-9218-3
  19. Young, I.G. and Gibson, F. 1969. Regulation of the enzymes involved in the biosynthesis of 2, 3-dihydroxybenzoic acid in Aerobacter aerogenes and E. coli. Biochim. Biophys. Acta. 177, 401-411. https://doi.org/10.1016/0304-4165(69)90302-X
  20. Zhang, R., Pan, L., and Zhao, Z. 2012. High incidence of plasmids in marine Vibrio species isolated from Mai Po Nature Reserve of Hong Kong. Ecotoxicology 21, 1661-1668. https://doi.org/10.1007/s10646-012-0939-7
  21. Zurkowski, W. and Lorkiewcz, Z. 1978. Effective method for the isolation of non-nodulation mutants of Rhizobium trifolii. Genet. Res. 32, 311-314. https://doi.org/10.1017/S0016672300018814

Cited by

  1. Effect of plasmid curing on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W vol.54, pp.3, 2016, https://doi.org/10.7845/kjm.2018.8026