DOI QR코드

DOI QR Code

Characterization of microbial communities and soil organic carbon degradation associated with the depth and thawing effects on tundra soil in Alaska

Alaska 툰드라 토양의 깊이 및 해동 영향에 따른 미생물 군집과 토양 유기 탄소 분해 특성

  • Park, Ha Ju (Division of Life Sciences, Korea Polar Research Institute) ;
  • Kim, Dockyu (Division of Life Sciences, Korea Polar Research Institute) ;
  • Park, Hyun (Division of Life Sciences, Korea Polar Research Institute) ;
  • Lee, Bang Yong (Arctic Reaearch Center, Korea Polar Research Institute) ;
  • Lee, Yoo Kyung (Arctic Reaearch Center, Korea Polar Research Institute)
  • 박하주 (극지연구소 극지생명과학연구부) ;
  • 김덕규 (극지연구소 극지생명과학연구부) ;
  • 박현 (극지연구소 극지생명과학연구부) ;
  • 이방용 (극지연구소 북극환경.자원연구센터) ;
  • 이유경 (극지연구소 북극환경.자원연구센터)
  • Received : 2016.04.26
  • Accepted : 2016.08.08
  • Published : 2016.09.30

Abstract

In high-latitude regions, temperature has risen ($0.6^{\circ}C$ per decade) and this leads to the increase in microbial degradability against soil organic carbon (SOC). Furthermore, the decomposed SOC is converted into green-house gases ($CO_2$ and $CH_4$) and their release could further increase the rate of climate change. Thus, understanding the microbial diversity and their functions linked with SOC degradation in soil-thawing model is necessary. In this study, we divided tundra soil from Council, Alaska into two depth regions (30-40 cm and 50-60 cm of depth, designated as SPF and PF, respectively) and incubated that for 108 days at $0^{\circ}C$. A total of 111,804 reads were obtained through a pyrosequencing-based metagenomic study during the microcosm experiments, and 574-1,128 of bacterial operational taxonomic units (OTUs) and 30-57 of archaeal OTUs were observed. Taxonomic analysis showed that the distribution of bacterial taxa was significantly different between two samples. In detail, the relative abundance of phyla Actinobacteria and Firmicutes largely increased in SPF and PF soil, respectively, while phyla Crenarchaeota was increased in both soil samples. Weight measurement and gel permeation chromatography of the SOC extracts demonstrated that polymerization of humic acids, main component of SOC, occurred during the microcosm experiments. Taken together our results indicate that these bacterial and archaeal phyla could play a key function in SOC degradation and utilization in cold tundra soil.

고위도에서의 온도 상승은 $0.6^{\circ}C$/10 년으로, 이는 토양 유기 탄소에 대한 미생물의 분해 활성 증가를 유도한다. 게다가, 분해된 토양 유기 탄소는 이산화탄소 또는 메탄 같은 온실가스로 전환, 방출되어 기후 변화를 가속화시킨다. 따라서, 토양 유기 탄소 분해와 관련된 미생물의 다양성 및 기능 이해를 위한 토양 해동 모델 연구가 필요하다. 이러한 연구를 위하여 Alaska Council의 두 깊이의 토양(SPF와 PF라 각각 명명한 30-40와 50-60 cm 깊이의 토양)을 $0^{\circ}C$에서 108일 동안 배양하였다. 환경 모사 실험 동안 pyrosequencing을 수행하였고, metagenome을 분석하여 총 111,804개의 미생물 sequence를 얻었다. 이 중, 574-1,128개의 세균 operational taxonomic unit (OTU)과 30-57개의 고세균 OTU를 확인하였다. 토양 배양에 따라 두 토양 모두에서 Crenarchaeota phyla의 상대적 분포가 증가하였으며, Actinobacteria와 Firmicutes phyla의 분포가 SPF와 PF에서 각각 크게 증가하였다. 추출한 토양 유기 탄소에 대한 무게 측정 및 gel permeation chromatography를 통해, 환경 모사 실험이 진행되는 동안 토양 유기 탄소의 주요 구성 성분인 부식산(humic acids)이 중합화(humification)되는 것을 확인하였다. 결론적으로, 냉대 툰드라 동토의 해동은 Crenarchaeota, Actinobacteria 및 Firmicutes phyla의 증가를 야기시키며, 미생물에 의한 토양 유기 탄소 분해 및 이용을 야기시키는 것으로 예측된다.

Keywords

References

  1. Barber, V.A., Juday, G.P., and Finney, B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperatureinduced drought stress. Nature 405, 668-673. https://doi.org/10.1038/35015049
  2. Brown, J. and Romanovsky, V.E. 2008. Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafr. Periglac. Process. 19, 255-260. https://doi.org/10.1002/ppp.618
  3. Bugg, T.D.H., Ahmad, M., Hardiman, E.M., and Singh, R. 2010. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 1-7. https://doi.org/10.1016/j.ceb.2010.01.003
  4. Chowdhury, T.R., Herndon, E.M., Phelps, T.J., Elias, D.A., Gu, B., Liang, L., Wullschleger, S.D., and Graham, D.E. 2015. Stoichiometry and temperature sensitivity of methanogenesis and $CO_2$ production from saturated polygonal tundra in Barrow, Alaska. Glob. Change Biol. 21, 722-737. https://doi.org/10.1111/gcb.12762
  5. Chun, J. and Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240-245. https://doi.org/10.1099/00207713-45-2-240
  6. Claus, H. 2015. Laccases: structure, reactions, distribution. Micron 35, 93-96.
  7. Dari, K., Bechet, M., and Blondeau, R. 1995. Isolation of soil Sterptomyces strains capable of degrading humic acids and analysis of their peroxidase activity. FEMS Microbiol. Ecol. 16, 115-122. https://doi.org/10.1111/j.1574-6941.1995.tb00275.x
  8. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., Schuur, E.A.G., et al. 2015. Shifts of tundra bacteria and archaeal communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 24, 222-234. https://doi.org/10.1111/mec.13015
  9. Douglas, T.A., Blum, J.D., Guo, L., Kellner, K., and Gleason, J.D. 2013. Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chem. Geol. 335, 48-62. https://doi.org/10.1016/j.chemgeo.2012.10.045
  10. Grinhut, T., Hertkorn N., Schmitt-Kopplin, P., Hadar, Y., and Chen, Y. 2011. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environ. Sci. Technol. 45, 2748-2754. https://doi.org/10.1021/es1036139
  11. Grinhut, T., Hadar, Y., and Chen, Y. 2007. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol. Rev. 21, 179-189. https://doi.org/10.1016/j.fbr.2007.09.003
  12. Gtari, M., Ghodhbane-Gtari, F., Nouioui, I., Beauchemin, N., and Tisa, L.S. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch. Microbiol. 194, 3-11. https://doi.org/10.1007/s00203-011-0733-6
  13. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi-production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  14. Henson, B.J., Watson, L.E., and Barnum, S.R. 2004. The evolutionary history of nitrogen fixation, as assessed by NifD. J. Mol. Evol. 58, 390-399. https://doi.org/10.1007/s00239-003-2560-0
  15. Hinzman, L.D., Kane, D.L., Gieck, R.E., and Everett, K.R. 1991. Hydrologic and thermal properties of the active layer in the Alaska Arctic. Cold Reg. Sci. Technol. 19, 95-110. https://doi.org/10.1016/0165-232X(91)90001-W
  16. Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  17. Kellner, H., Luis, P., Zimdars, B., Kiesel, B., and Buscot, F. 2008. Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol. Biochem. 40, 638-648. https://doi.org/10.1016/j.soilbio.2007.09.013
  18. Lee, S.H., Jang, I., Chae, N., Choi, T., and Kang, H. 2013. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils. Microb. Ecol. 65, 405-414. https://doi.org/10.1007/s00248-012-0125-8
  19. Leigh, J.A. 2000. Nitrogen fixation in methanogens: The archaeal perspective. Curr. Issues Mol. Biol. 2, 125-131.
  20. Mayer, A.M. and Staples, R.C. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60, 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
  21. Mishra, U. and Riley, W.J. 2012. Spatial variability of the active layer, permafrost, and soil profile depth in Alaskan soils, pp. 83-88. In Minasny, B., Brendan, M., and McBratney, A.B. (eds.), Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Taylor and Francis Group, London, UK.
  22. Park, H.J., Chae, N., Sul, W.J., Lee, B.Y., Lee, Y.K., and Kim, D. 2015. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil. Microb. Ecol. 69, 668-675. https://doi.org/10.1007/s00248-014-0499-x
  23. Park, H.J. and Kim, D. 2015. Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands. J. Basic Microbiol. 55, 54-61. https://doi.org/10.1002/jobm.201300087
  24. Paul, E.A. 2014. Soil microbiology, ecology, and biochemistry, pp. 421-446. 4th ed. Academic press, USA.
  25. Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A., and Lyon, D.J. 1997. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci. Am. J. 61, 1058-1067. https://doi.org/10.2136/sssaj1997.03615995006100040011x
  26. Ping, C.L., Jastrow, J.D., Jorgenson, M.T., Michaelson, G.J., and Shur, Y.L. 2015. Permafrost soils and carbon cycling. Soil 1, 147-171. https://doi.org/10.5194/soil-1-147-2015
  27. Quaiser, A., Ochsenreiter, T., Klenk, H., Kletzin, A., Treusch, A.H., Meurer, G., Eck, J., Sensen, C.W., and Schleper, C. 2002. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4, 603-611. https://doi.org/10.1046/j.1462-2920.2002.00345.x
  28. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  29. Schuur, E.A.G., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., et al. 2015. Climate change and the permafrost carbon feedback. Nature 520, 171-179. https://doi.org/10.1038/nature14338
  30. Strawn, D.G., Bohn, H.L., and O'Connor G.A. 2015. Soil chemistry, pp. 138-141. 4th ed. Wiley-Blackwell, USA.
  31. Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 72, 1985-1995.
  32. Zavarzina, A.G., Leontievsky, A.A., Golovleva, L.A., and Trofimov, S.Y. 2004. Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol. Biochem. 36, 359-369. https://doi.org/10.1016/j.soilbio.2003.10.010