References
- Barber, V.A., Juday, G.P., and Finney, B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperatureinduced drought stress. Nature 405, 668-673. https://doi.org/10.1038/35015049
- Brown, J. and Romanovsky, V.E. 2008. Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafr. Periglac. Process. 19, 255-260. https://doi.org/10.1002/ppp.618
- Bugg, T.D.H., Ahmad, M., Hardiman, E.M., and Singh, R. 2010. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 1-7. https://doi.org/10.1016/j.ceb.2010.01.003
-
Chowdhury, T.R., Herndon, E.M., Phelps, T.J., Elias, D.A., Gu, B., Liang, L., Wullschleger, S.D., and Graham, D.E. 2015. Stoichiometry and temperature sensitivity of methanogenesis and
$CO_2$ production from saturated polygonal tundra in Barrow, Alaska. Glob. Change Biol. 21, 722-737. https://doi.org/10.1111/gcb.12762 - Chun, J. and Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240-245. https://doi.org/10.1099/00207713-45-2-240
- Claus, H. 2015. Laccases: structure, reactions, distribution. Micron 35, 93-96.
- Dari, K., Bechet, M., and Blondeau, R. 1995. Isolation of soil Sterptomyces strains capable of degrading humic acids and analysis of their peroxidase activity. FEMS Microbiol. Ecol. 16, 115-122. https://doi.org/10.1111/j.1574-6941.1995.tb00275.x
- Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., Schuur, E.A.G., et al. 2015. Shifts of tundra bacteria and archaeal communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 24, 222-234. https://doi.org/10.1111/mec.13015
- Douglas, T.A., Blum, J.D., Guo, L., Kellner, K., and Gleason, J.D. 2013. Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chem. Geol. 335, 48-62. https://doi.org/10.1016/j.chemgeo.2012.10.045
- Grinhut, T., Hertkorn N., Schmitt-Kopplin, P., Hadar, Y., and Chen, Y. 2011. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environ. Sci. Technol. 45, 2748-2754. https://doi.org/10.1021/es1036139
- Grinhut, T., Hadar, Y., and Chen, Y. 2007. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol. Rev. 21, 179-189. https://doi.org/10.1016/j.fbr.2007.09.003
- Gtari, M., Ghodhbane-Gtari, F., Nouioui, I., Beauchemin, N., and Tisa, L.S. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch. Microbiol. 194, 3-11. https://doi.org/10.1007/s00203-011-0733-6
- Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi-production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
- Henson, B.J., Watson, L.E., and Barnum, S.R. 2004. The evolutionary history of nitrogen fixation, as assessed by NifD. J. Mol. Evol. 58, 390-399. https://doi.org/10.1007/s00239-003-2560-0
- Hinzman, L.D., Kane, D.L., Gieck, R.E., and Everett, K.R. 1991. Hydrologic and thermal properties of the active layer in the Alaska Arctic. Cold Reg. Sci. Technol. 19, 95-110. https://doi.org/10.1016/0165-232X(91)90001-W
- Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
- Kellner, H., Luis, P., Zimdars, B., Kiesel, B., and Buscot, F. 2008. Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol. Biochem. 40, 638-648. https://doi.org/10.1016/j.soilbio.2007.09.013
- Lee, S.H., Jang, I., Chae, N., Choi, T., and Kang, H. 2013. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils. Microb. Ecol. 65, 405-414. https://doi.org/10.1007/s00248-012-0125-8
- Leigh, J.A. 2000. Nitrogen fixation in methanogens: The archaeal perspective. Curr. Issues Mol. Biol. 2, 125-131.
- Mayer, A.M. and Staples, R.C. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60, 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
- Mishra, U. and Riley, W.J. 2012. Spatial variability of the active layer, permafrost, and soil profile depth in Alaskan soils, pp. 83-88. In Minasny, B., Brendan, M., and McBratney, A.B. (eds.), Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Taylor and Francis Group, London, UK.
- Park, H.J., Chae, N., Sul, W.J., Lee, B.Y., Lee, Y.K., and Kim, D. 2015. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil. Microb. Ecol. 69, 668-675. https://doi.org/10.1007/s00248-014-0499-x
- Park, H.J. and Kim, D. 2015. Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands. J. Basic Microbiol. 55, 54-61. https://doi.org/10.1002/jobm.201300087
- Paul, E.A. 2014. Soil microbiology, ecology, and biochemistry, pp. 421-446. 4th ed. Academic press, USA.
- Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A., and Lyon, D.J. 1997. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci. Am. J. 61, 1058-1067. https://doi.org/10.2136/sssaj1997.03615995006100040011x
- Ping, C.L., Jastrow, J.D., Jorgenson, M.T., Michaelson, G.J., and Shur, Y.L. 2015. Permafrost soils and carbon cycling. Soil 1, 147-171. https://doi.org/10.5194/soil-1-147-2015
- Quaiser, A., Ochsenreiter, T., Klenk, H., Kletzin, A., Treusch, A.H., Meurer, G., Eck, J., Sensen, C.W., and Schleper, C. 2002. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4, 603-611. https://doi.org/10.1046/j.1462-2920.2002.00345.x
- Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Schuur, E.A.G., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., et al. 2015. Climate change and the permafrost carbon feedback. Nature 520, 171-179. https://doi.org/10.1038/nature14338
- Strawn, D.G., Bohn, H.L., and O'Connor G.A. 2015. Soil chemistry, pp. 138-141. 4th ed. Wiley-Blackwell, USA.
- Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 72, 1985-1995.
- Zavarzina, A.G., Leontievsky, A.A., Golovleva, L.A., and Trofimov, S.Y. 2004. Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol. Biochem. 36, 359-369. https://doi.org/10.1016/j.soilbio.2003.10.010