DOI QR코드

DOI QR Code

Microbial community structure analysis from Jeju marine sediment

제주도 인근 해양퇴적물 내의 미생물 군집 구조분석

  • Koh, Hyeon Woo (Department of Biology, Jeju National University) ;
  • Rani, Sundas (Department of Biology, Jeju National University) ;
  • Hwang, Han-Bit (Department of Biology, Jeju National University) ;
  • Park, Soo-Je (Department of Biology, Jeju National University)
  • Received : 2016.07.07
  • Accepted : 2016.08.08
  • Published : 2016.09.30

Abstract

In this study, the structure and diversity of bacterial community were investigated in the surface and subsurface marine sediments using a NGS method (i.e. illumina sequencing technology). The bacterial community in the surface was distinct from that in the subsurface of marine sediment; with the exception of the phylum Proteobacteria, the relative abundance of Bacteroides phylum were higher in the surface than subsurface, whereas the sequences affiliated to the phyla Chloroflexi and Acidobacteria were relatively more copious in the subsurface than surface sediment. Moreover, interestingly, we observed that the phyla Nitrospinae and Nitrospirae contribute to nitrogen cycle in the marine sediment. This study may present the possibility for the presence of novel microorganisms as unexplored sources and provide basic information on the microbial community structure.

본 연구에서는 차세대염기서열분석 기법을 활용하여 제주도 인근 해양퇴적물의 상층부와 하층부내의 미생물 군집구조와 다양성을 조사하였다. 상층부와 하층부의 미생물 군집구조는 상이하였으며, Proteobacteria 문을 제외하고, 상층부에서는 Bacteroides 문이, 하층부에서는 Chloroflexi와 Acidobacteria 문이 각각 우점하는 것으로 확인되었다. 또한, 흥미롭게도 질소순환에 관여하는 것으로 알려진 Nitrospinae와 Nitrospirae 문도 서식하고 있음이 관찰되었다. 본 연구를 통하여, 아직 발굴되지 않은 새로운 미생물의 자원으로서의 가능성과 해양퇴적물내의 기본적인 정보를 제공할 수 있을 것으로 기대한다.

Keywords

References

  1. Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  2. Brown, D.R., Whitcomb, R.F., and Bradbury, J.M. 2007. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int. J. Syst. Evol. Microbiol. 57, 2703-2719. https://doi.org/10.1099/ijs.0.64722-0
  3. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4516-4522. https://doi.org/10.1073/pnas.1000080107
  4. Choi, H., Koh, H.W., Kim, H., Chae, J.C., and Park, S.J. 2016. Microbial community composition in the marine sediments of Jeju island: next-generation sequencing surveys. J. Microbiol. Biotechnol. 26, 883-890. https://doi.org/10.4014/jmb.1512.12036
  5. Claesson, M.J., Wang, Q., O'Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O'Toole, P.W. 2010. Comparison of two nextgeneration sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200. https://doi.org/10.1093/nar/gkq873
  6. da Silva, M.A.C., Cavalett, A., Spinner, A., Rosa, D.C., Jasper, R.B., Quecine, M.C., Bonatelli, M.L., Pizzirani-Kleiner, A., Corcao, G., and Lima, A.O.d.S. 2013. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus 2, 1-10. https://doi.org/10.1186/2193-1801-2-1
  7. Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J., and Knight, R. 2008. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 5, 235-237. https://doi.org/10.1038/nmeth.1184
  8. Hugenholtz, P. and Kyrpides, N.C. 2009. A changing of the guard. Environ. Microbiol. 11, 551-553. https://doi.org/10.1111/j.1462-2920.2009.01888.x
  9. Kellogg, C.A., Lisle, J.T., and Galkiewicz, J.P. 2009. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 75, 2294-2303. https://doi.org/10.1128/AEM.02357-08
  10. Kim, Y.S., Kim, J., and Park, S.J. 2015. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33, 1-7. https://doi.org/10.1016/j.anaerobe.2015.01.004
  11. Koh, H.W., Kim, M.S., Lee, J.S., Kim, H., and Park, S.J. 2015. Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection. Microbes Environ. 30, 284-287. https://doi.org/10.1264/jsme2.ME15046
  12. Kuczynski, J., Lauber, C.L., Walters, W.A., Parfrey, L.W., Clemente, J.C., Gevers, D., and Knight, R. 2012. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13, 47-58. https://doi.org/10.1038/nrg3129
  13. Lynch, M.D. and Neufeld, J.D. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217-229. https://doi.org/10.1038/nrmicro3400
  14. McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R., and Hugenholtz, P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610-618. https://doi.org/10.1038/ismej.2011.139
  15. Miyatake, T., MacGregor, B.J., and Boschker, H.T. 2009. Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl. Environ. Microbiol. 75, 4927-4935. https://doi.org/10.1128/AEM.00652-09
  16. Neulinger, S.C., Gartner, A., Jarnegren, J., Ludvigsen, M., Lochte, K., and Dullo, W.C. 2009. Tissue-associated "Candidatus Mycoplasma corallicola" and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia). Appl. Environ. Microbiol. 75, 1437-1444. https://doi.org/10.1128/AEM.01781-08
  17. Neulinger, S.C., Jarnegren, J., Ludvigsen, M., Lochte, K., and Dullo, W.C. 2008. Phenotype-specific bacterial communities in the coldwater coral Lophelia pertusa (Scleractinia) and their implications for the coral's nutrition, health, and distribution. Appl. Environ. Microbiol. 74, 7272-7285. https://doi.org/10.1128/AEM.01777-08
  18. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431-437. https://doi.org/10.1038/nature12352
  19. Roling, W.F., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.J., and Head, I.M. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68, 5537-5548. https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  20. Skennerton, C.T., Haroon, M.F., Briegel, A., Shi, J., Jensen, G.J., Tyson, G.W., and Orphan, V.J. 2016. Phylogenomic analysis of Candidatus 'Izimaplasma' species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J. DOI http://dx.doi.org/10.1038/ismej.2016.55.
  21. Vinas, M., Sabate, J., Espuny, M.J., and Solanas, A.M. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71, 7008-7018. https://doi.org/10.1128/AEM.71.11.7008-7018.2005
  22. Walsh, E.A., Kirkpatrick, J.B., Rutherford, S.D., Smith, D.C., Sogin, M., and D'Hondt, S. 2016. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 10, 979-989. https://doi.org/10.1038/ismej.2015.175
  23. Yamada, T. and Sekiguchi, Y. 2009. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi 'subphylum i' with natural and biotechnological relevance. Microbes Environ. 24, 205-216. https://doi.org/10.1264/jsme2.ME09151S

Cited by

  1. 차세대 염기서열 분석법을 이용한 방어(Seriola quinqueradiata)의 microsatellite 마커의 개발 및 유전적 특성 분석 vol.30, pp.3, 2016, https://doi.org/10.5352/jls.2020.30.3.291