DOI QR코드

DOI QR Code

Complete genome sequence of a cold-adapted humic acid degrading bacterium Pedobacter sp. PAMC 27299 from the Antarctic seashore

남극 해안으로부터 저온적응 부식산 분해 Pedobacter sp. PAMC 27299의 유전체 서열 해독

  • Kim, Hye-Jin (Department of Systems Biotechnology, Chung-Ang University) ;
  • Park, Jae Wan (Department of Systems Biotechnology, Chung-Ang University) ;
  • Park, Ha Ju (Division of Life Sciences, Korea Polar Research Institute) ;
  • Kim, Dockyu (Division of Life Sciences, Korea Polar Research Institute) ;
  • Sul, Woo Jun (Department of Systems Biotechnology, Chung-Ang University)
  • 김혜진 (중앙대학교 시스템생명공학과) ;
  • 박재완 (중앙대학교 시스템생명공학과) ;
  • 박하주 (극지연구소 생명과학연구부) ;
  • 김덕규 (극지연구소 생명과학연구부) ;
  • 설우준 (중앙대학교 시스템생명공학과)
  • Received : 2016.09.01
  • Accepted : 2016.09.08
  • Published : 2016.09.30

Abstract

Pedobacter sp. PAMC 27299 with humic acid cultivated on low temperature was isolated from the moss debris on the coast of the Barton Peninsula of King George Island of the maritime Antarctic region. Here, we present the complete genome sequence of Pedobacter sp. PAMC 27299, which contains 6,147,290 bp with a G+C content of 40.54%. PAMC 27299 may possess cold-adapted humic acid degradation enzymes with implication on global warming.

부식산(humic acid)을 이용하여 저온에서 배양된 Pedobacter sp. PAMC 27299는 남극 바톤 반도(Barton Peninsula) King George Island의 해안가 이끼(moss debris)로부터 분리되었다. 본 연구에서는 Pedobacter sp. PAMC 27299의 유전체 서열을 해독하였으며 크기 6,147,290 bp, G+C 함량 40.54%의 PAMC 27299는 지구 온난화 관련 저온적응 부식산 분해 효소를 보유하는 것으로 확인되었다.

Keywords

References

  1. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  2. Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  3. Delcher, A.L., Bratke, K.A., Powers, E.C., and Salzberg, S.L. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673-679. https://doi.org/10.1093/bioinformatics/btm009
  4. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12. https://doi.org/10.1186/gb-2004-5-2-r12
  5. Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108. https://doi.org/10.1093/nar/gkm160
  6. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  7. Park, H.J., Chae, N., Sul, W.J., Lee, B.Y., Lee, Y.K., and Kim, D. 2015. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil. Microb. Ecol. 69, 668-675. https://doi.org/10.1007/s00248-014-0499-x