DOI QR코드

DOI QR Code

Effects of Cdc31, a component of TREX-2 complex, on growth and mRNA export in fission yeast

분열효모에서 TREX-2 복합체의 구성요소인 Cdc31이 생장과 mRNA export에 미치는 영향

  • Koh, Eun-Jin (Basic Science Research Institute, School of Biological Science and Chemistry, Sungshin Women's University) ;
  • Yoon, Jin Ho (Basic Science Research Institute, School of Biological Science and Chemistry, Sungshin Women's University)
  • 고은진 (성신여자대학교 생명과학.화학부 및 기초과학연구소) ;
  • 윤진호 (성신여자대학교 생명과학.화학부 및 기초과학연구소)
  • Received : 2016.08.22
  • Accepted : 2016.09.12
  • Published : 2016.09.30

Abstract

In fission yeast, Schizosaccharomyces pombe, the cdc31 gene encodes a member of the conserved $Ca^{2+}$-binding centrin/CDC31 family, which is a component of spindle pole body. Here, we demonstrate that the S. pombe cdc31p is also a component of TREX-2 complex, which influences mRNA export from the nucleus to the cytoplasm. Repression of the cdc31 gene expression caused growth defect with accumulation of $poly(A)^+$ RNA in the nucleus. On the other hand, over-expression of cdc31 exhibited no defects of both growth and bulk mRNA export, but showed somewhat longer cell morphology. Yeast two-hybrid analysis showed that Cdc31 interacted with Sac3 and Pci2, the subunits of TREX-2 complex. These results suggest that S. pombe Cdc31 is also involved in mRNA export as a component of TREX-2 complex.

분열효모 Schizosaccharomyces pombe의 cdc31 유전자는 진화적으로 잘 보존된 $Ca^{2+}$-결합 centrin/CDC31 계열에 속하며 방추극체(spindle pole body)의 한 성분인 단백질을 암호화하고 있다. 이 논문에서는 S. pombe의 Cdc31 단백질이 방추극체뿐만 아니라 TREX-2 복합체의 구성인자로서 mRNA의 핵에서 세포질로의 방출에 영향을 미치는지 알아보았다. cdc31 유전자의 발현을 억제하면 생장 결함을 보였고, $poly(A)^+$ RNA도 핵 안에 축적되는 현상을 보였다. 한편 cdc31 유전자를 과발현시키면, 생장과 mRNA 방출에 결함을 보이진 않았지만 세포의 길이가 길어지는 형태를 보였다. Yeast two-hybrid 분석에서 Cdc31 단백질은 TREX-2 복합체의 또 다른 구성인자인 Sac3 그리고 Pci2와 상호작용을 하였다. 이와 같은 결과들은 S. pombe의 Cdc31 단백질도 역시 TREX-2 복합체의 구성인자로 mRNA 방출에 관여하고 있음을 시사한다.

Keywords

References

  1. Alfa, C., Fantes, P., Hyams, J., Mcleod, M., and Warbrick, E. 1993. Experiments with Fission Yeast. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  2. Baum, P., Furlong, C., and Byers, B. 1986. Yeast gene required for spindle pole body duplication: homology of its product with $Ca^{2+}$-binding proteins. Proc. Natl. Acad. Sci. USA 83, 5512-5516. https://doi.org/10.1073/pnas.83.15.5512
  3. Bermejo, R., Capra, T., Jossen, R., Colosio, A., Frattini, C., Carotenuto, W., Cocito, A., Doksani, Y., Klein, H., Gomez-Gonzalez, B., et al. 2011. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233-246. https://doi.org/10.1016/j.cell.2011.06.033
  4. Bouhlel, I.B., Ohta, M., Mayeux, A., Bordes, N., Dingli, F., Boulanger, J., Velve Casquillas, G., Loew, D., Tran, P.T., Sato, M., et al. 2015. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast. J. Cell Sci. 128, 1481-1493. https://doi.org/10.1242/jcs.159657
  5. Cabal, G.G., Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach-Fournier, F., Olivo-Marin, J.C., Hurt, E.C., et al. 2006. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770-773. https://doi.org/10.1038/nature04752
  6. Ellisdon, A.M., Dimitrova, L., Hurt, E., and Stewart, M. 2012. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat. Struct. Mol. Biol. 19, 328-336. https://doi.org/10.1038/nsmb.2235
  7. Fischer, T., Strasser, K., Racz, A., Rodriguez-Navarro, S., Oppizzi, M., Ihrig, P., Lechner, J., and Hurt, E. 2002. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843-5852. https://doi.org/10.1093/emboj/cdf590
  8. Forsburg, S.L. 1993. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955-2956. https://doi.org/10.1093/nar/21.12.2955
  9. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P., and Aguilera, A. 2003. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225-24232. https://doi.org/10.1074/jbc.M302900200
  10. Garcia-Oliver, E., Garcia-Molinero, V., and Rodriguez-Navarro, S. 2012. mRNA export and gene expression: the SAGA-TREX-2 connection. Biochim. Biophys. Acta 1819, 555-565. https://doi.org/10.1016/j.bbagrm.2011.11.011
  11. Gonzalez-Aguilera, C., Tous, C., Gomez-Gonzalez, B., Huertas, P., Luna, R., and Aguilera, A. 2008. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol. Biol. Cell 19, 4310-4318. https://doi.org/10.1091/mbc.E08-04-0355
  12. Ibarra, A. and Hetzer, M.W. 2015. Nuclear pore proteins and the control of genome functions. Gen. Dev. 29, 337-349. https://doi.org/10.1101/gad.256495.114
  13. Jani, D., Lutz, S., Marshall, N.J., Fischer, T., Kohler, A., Ellisdon, A.M., Hurt, E., and Stewart, M. 2009. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727-737. https://doi.org/10.1016/j.molcel.2009.01.033
  14. Kohler, A. and Hurt, E. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell. Biol. 8, 761-773. https://doi.org/10.1038/nrm2255
  15. Lei, E.P., Stern, C.A., Fahrenkrog, B., Krebber, H., Moy, T.I., Aebi, U., and Silver, P.A. 2003. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell 14, 836-847. https://doi.org/10.1091/mbc.E02-08-0520
  16. Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127-130. https://doi.org/10.1016/0378-1119(93)90551-D
  17. Moreno, S., Klar, A., and Nurse, P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795-823. https://doi.org/10.1016/0076-6879(91)94059-L
  18. Paoletti, A., Bordes, N., Haddad, R., Schwartz, C.L., Chang, F., and Bornens, M. 2003. Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol. Biol. Cell. 14, 2793-2808. https://doi.org/10.1091/mbc.E02-10-0661
  19. Perales, R. and Bentley, D. 2009. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178-191. https://doi.org/10.1016/j.molcel.2009.09.018
  20. Rodriguez-Navarro, S. and Hurt, E. 2011. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol. 23, 302-309. https://doi.org/10.1016/j.ceb.2010.12.002
  21. Schneider, M., Hellerschmied, D., Schubert, T., Amlacher, S., Vinayachandran, V., Reja, R., Pugh, B.F., Clausen, T., and Kohler, A. 2015. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell 162, 1016-1028. https://doi.org/10.1016/j.cell.2015.07.059
  22. Seybold, C., Elserafy, M., Ruthnick, D., Ozboyaci, M., Neuner, A., Flottmann, B., Heilemann, M., Wade, R.C., and Schiebel, E. 2015. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J. Cell Biol. 209, 843-861. https://doi.org/10.1083/jcb.201412050
  23. Stewart, M. 2010. Nuclear export of mRNA. Trends Biochem. Sci. 35, 609-617. https://doi.org/10.1016/j.tibs.2010.07.001
  24. Yoon, J.H., Love, D., Guhathakurta, A., Hanover, J.A., and Dhar, R. 2000. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol. Cell. Biol. 20, 8767-8782. https://doi.org/10.1128/MCB.20.23.8767-8782.2000

Cited by

  1. 분열효모 Pci2가 TREX-2 구성요소로서 mRNA 방출에 미치는 영향 vol.54, pp.4, 2016, https://doi.org/10.7845/kjm.2018.8093
  2. 분열효모에서 Thp1/PCID2의 이종상동체인 SPAC1B3.08이 mRNA 방출에 미치는 영향 vol.55, pp.2, 2016, https://doi.org/10.7845/kjm.2019.9051