DOI QR코드

DOI QR Code

케로신-공기 혼합물의 데토네이션 하중에 의한 열탄소성 관의 동적 거동 해석

Numerical Investigation of Dynamic Responses of a Thermal Elasto-plastic Tube under Kerosene-air Mixture Detonation

  • Gwak, Min-cheol (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Younghun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2015.12.05
  • 심사 : 2016.08.14
  • 발행 : 2016.10.01

초록

본 연구에서는 케로신-공기 혼합물 데토네이션 계산과 다물질 해석을 기반으로 데토네이션 하중에 의한 얇은 금속관의 열탄소성 거동에 대한 수치계산을 수행하였다. 데토네이션 하중은 케로신-공기 혼합물의 데토네이션을 활용하여 모델링하였으며, 검증을 위해 해석 결과를 C-J 조건과 실험적 셀 직경을 통해 비교 검증하였다. 또한 금속의 탄성/소성 거동을 확인하기 위하여, 소성 거동은 구리의 Taylor impact 문제로, 탄성 거동은 베를리움 평판 떨림 문제를 활용하였다. 온도에 의한 관의 탄소성 거동 변화를 확인하기 위하여 동일한 데토네이션 하중 하에서 초기 온도가 다른 관의 거동을 확인하고 이론식과의 비교를 통해 열연화 효과가 고려되어야 함을 확인하였다.

This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with Chapman-Jouguet (C-J) condition and experimental cell size. To conform the elasto-plastic model, plastic and elastic behaviors are verified by Taylor impact and plate bending motion, respectively. The numerical results are compared with the theory on burst pressure of tube. The critical deformable thickness with the thermal softening considered is good agreement with the theoretical value.

키워드

참고문헌

  1. Roy, G.D., Frolov, S.M., Borisov, A.A. and Netzer, D.W., "Pulse Detonation Engine: Challenges, Current Status, and Future Perspective," Progress in Energy and Combustion Science, Vol. 30, No. 6, pp. 545-672, 2004. https://doi.org/10.1016/j.pecs.2004.05.001
  2. Harris, P.G., Stowe, R.A., Ripley, R.C. and Guzik, S.M., "Pulse Detonation Engine as a Ramjet Replacement," Journal of Propulsion and Power, Vol. 22, No. 2, pp. 462-473, 2006. https://doi.org/10.2514/1.15414
  3. Smirnov, N.N. and Nikitin, V.F., "Modeling and Simulation of Hydrogen Combustion in Engines," Hydrogen Energy, Vol. 39, No. 2, pp. 2025-2033, 2014.
  4. Gwak, M.C., Lee, Y.H., Kim, K.H. and Yoh, J.J., "Deformable Wall Effects on the Detonation of Combustible gas Mixture in a Thin-walled Tube," International Journal of Hydrogen Energy, Vol. 40, No. 7, pp. 3006-3014, 2015. https://doi.org/10.1016/j.ijhydene.2014.12.127
  5. Tsubio, N., Watanabe, Y., Kojima, T. and Hayashi, A.K., "Numerical Estimation of the Thrust Performance on a Rotating Detonation Engine for a Hydrogen-Oxygen Mixture," Proceedings of the Combustion Institute, Vol. 35, No. 2, pp. 2005-2013, 2015. https://doi.org/10.1016/j.proci.2014.09.010
  6. Huang, Y., Tang, H., Li, J. and Zhang, C., "Studies of DDT Enhancement Approaches for Kerosene-Fueled Small-Scale Pulse Detonation Engines Applications," Shock Waves, Vol. 22, No. 6, pp. 615-625, 2012. https://doi.org/10.1007/s00193-012-0396-5
  7. Lu, F.K. and Braun, E.M., "Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts," Journal of Propulsion and Power, Vol. 30, No. 5, pp. 1125-1142, 2014. https://doi.org/10.2514/1.B34802
  8. Shen, H., Wang, G., Liu, K. and Zhang, D., "Numerical Simulation of Liquid-Fueled Detonations by an Eulerian-Lagrangian Model," International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 13, No. 2, pp. 177-188, 2012.
  9. Wang, K., Fan, W., Zhu, X., Yan, Y. and Gao, Z., "Experimental Investigations on Effects of Wall-Temperature on Performance of a Pulse Detonation Rocket Engine," Experimental Thermal and Fluid Science, Vol. 48, No. 1, pp. 230-237, 2013. https://doi.org/10.1016/j.expthermflusci.2013.03.005
  10. Wu, M.H. and Lu, T.H., "Development of a Chemical Microthruster Based on Pulsed Detonation," Journal of Micromechaics and Microengineering, Vol. 22, No. 10, pp. 1-10, 2012.
  11. Smirnov, N.N., Betelin, V.B., Nikitin, V.F., Phylippov, Y.G. and Koo, J., "Detonation Engine Fed by Acetylene-Oxygen Mixture," Acta Astronautica, Vol. 104, No. 1, pp. 134-146, 2014. https://doi.org/10.1016/j.actaastro.2014.07.019
  12. Oran, E.S. and Gamezo, V.N., "Origins of the deflagration-to-detonation transition in gas-phase combustion," Combustion and Flame, Vol. 148, No. 1, pp. 4-47, 2007. https://doi.org/10.1016/j.combustflame.2006.07.010
  13. Lee, Y.G., Gwak, M.C. and Yoh, J.J., "Numerical analysis of detonation of kerosene-air mixture and solid structure," Journal of the Korean Society of Propulsion Engineers, Vol. 19, No. 2, pp. 29-37, 2015. https://doi.org/10.6108/KSPE.2015.19.2.029
  14. Kim, K. and Yoh, J.J., "A Particle Level-set Based Eulerian Method for Multi-Material Detonation Simulation of High Explosive and Metal Confinements," Proceedings of the Combustion Institute, Vol. 34, No. 1, pp. 2025-2033, 2013. https://doi.org/10.1016/j.proci.2012.07.010
  15. Gwak, M.C., Lee, Y.H., Kim, K.H. and Yoh, J.J., "Deformable Wall Effects on the Detonation of Combustible gas Mixture in a Thin-walled Tube," International Journal of Hydrogen Energy, Vol. 40, No. 7, pp. 3006-3014, 2015. https://doi.org/10.1016/j.ijhydene.2014.12.127
  16. Akber, R., Thibault, P.A., Harris, P.G., Lussier, L.S., Zhang, F., Murray, S.B. and Gerrard, K., "Detonation Properties of Unsensitized and Sensitized JP-10 and Jet-A Fuels in Air for Pulse Detonation Engines," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, N.Y., U.S.A., AIAA-2000-3592, July, 2000.
  17. House, J.W., Aref, B., Foster Jr., J.C. and Gillis, P.P., "Film data reduction from Taylor impact tests," Journal of Stain Analysis, Vol. 34, No. 5, pp. 337-345, 1999. https://doi.org/10.1243/0309324991513678
  18. Menshov, I.S., Mischenko, A.V. and Serejkin, A.A., "Numerical modeling of elastoplastic flows by the Godunov method on moving eulerian grids," Mathematical Models and Computer Simulations, Vol. 6, No. 2, pp. 127-141, 2014. https://doi.org/10.1134/S2070048214020070
  19. Reference manual, MSC. NASTRAN, Version r2, MSC. Software, 2012.
  20. Hu X.Y. and Khoo, B.C., "An interface interaction method for compressible multifluids," Journal of Computational Physics, Vol. 198, No. 2, pp. 35-64, 2004. https://doi.org/10.1016/j.jcp.2003.12.018