DOI QR코드

DOI QR Code

Protective effect of Korean diet food groups on lymphocyte DNA damage and contribution of each food group to total dietary antioxidant capacity (TDAC)

한식 식품군의 in vitro 총 항산화능 (TDAC)과 ex vivo DNA 손상 보호효과와의 관련성

  • Lee, Min Young (Dept. of Food & Nutrition, Daedeok Valley Campus, Hannam University) ;
  • Han, Jeong-Hwa (Dept. of Food & Nutrition, Daedeok Valley Campus, Hannam University) ;
  • Kang, Myung-Hee (Dept. of Food & Nutrition, Daedeok Valley Campus, Hannam University)
  • 이민영 (한남대학교 식품영양학과) ;
  • 한정화 (한남대학교 식품영양학과) ;
  • 강명희 (한남대학교 식품영양학과)
  • Received : 2016.09.01
  • Accepted : 2016.10.05
  • Published : 2016.10.31

Abstract

Purpose: This study was performed to compare total phenolic contents, in vitro antioxidant capacity, and reduction effect of Korean food groups on ex vivo DNA damage in human cells and analyze correlations between each indicator. Methods: Vegetable foods in the Korean diet based the results of the KNHANES V-2 (2011) were classified into 10 food groups: cereals, fruits, vegetables, nuts, kimchi, seaweeds, potatoes, mushrooms, legumes, and oils. Eighty-four foods constituted more than 1% of the total intake in each food group and finally designated as vegetable foods in the Korean diet. Total phenolic content of each food group was measured. Further, in vitro antioxidant capacity was measured based on DPPH radical scavenging assay, TEAC assay, and $ORAC_{ROO{\cdot}}$ assay. Ex vivo DNA damage in human lymphocytes was assessed using comet assay. Results: Total phenolic contents of food groups of the Korean diet increased in the order of mushrooms, fruits, vegetables, seaweeds, and kimchi. Meanwhile, antioxidant rankings of food groups as mean values from the three in vitro test methods increased in the order of mushrooms, seaweeds, vegetables, kimchi, and fruits. Protection against ex vivo DNA damage in human lymphocytes was highest in mushrooms, followed by vegetables, fruits, seaweeds, and kimchi. The rankings of the food groups for total phenolic content, in vitro DAC, and ex vivo DNA protection activity were similar, and correlations between each indicator were significantly high. Conclusion: Mushrooms, fruits, vegetables, and seaweeds among the tested food groups in the Korean diet showed high total phenolic contents, in vitro antioxidant capacities, and protection against DNA damage. Correlations between each indicator in terms of total phenolic content, in vitro antioxidant capacity, and ex vivo DNA protection between each food group were found to be particularly high.

본 연구는 제5기 2차년도 국민건강영양조사 결과를 활용하여 한식 식품군의 총 페놀 함량, in vitro 항산화활성 및 인체세포를 이용한 ex vivo DNA 손상 감소효과를 비교하고, 각 지표간의 상관성을 분석하며, 한식의 총 식사 항산화능에 대한 각 식품군의 기여도를 알아보기 위해 수행되었다. 제5기 2차년도 국민건강영양조사 결과를 바탕으로 한식의 식물성 식품을 10가지 식품군 (곡류, 과일류, 채소류, 견과류, 김치류, 해조류, 감자류, 버섯류, 두류, 오일류)으로 분류한 후 각 식품군별로 총 섭취량의 1% 이상 섭취한 식품 84종을 한식의 식물성 식품으로 최종 선정하였다. 각 식품군의 총 페놀함량을 측정하였고, DPPH radical scavenging assay, TEAC assay, $ORAC_{ROO{\cdot}}$ assay를 사용하여 in vitro 항산화능을 측정하였다. 한식의 식품군별 항산화능 (dietary antioxidant capacity, DAC)은 in vitro 항산화활성 평균값과 각 식품군의 1일 섭취량을 고려하여 계산하였고 한식 TDAC는 각 식품군의 DAC로의 합으로 구하였으며, TDAC에 대한 각 식품군 항산화능의 기여도를 평가하였다. 인체 임파구에서의 ex vivo DNA 손상 정도는 comet assay를 사용하여 평가하였다. 한식 식품군의 총 페놀함량은 버섯류, 과일류, 채소류, 해조류, 김치류 등의 순으로 높았으며, 3가지 in vitro 실험법을 평균한 식품군의 항산화활성 순위는 버섯류, 해조류, 채소류, 김치류, 과일류 등의 순이었다. 각 식품군의 항산화활성에 식품섭취량을 고려하여 계산한 한식의 TDAC에 대한 식품군의 항산화능 기여도는 곡류가 33.4%로 가장 높았으며, 과일류 (23.9%), 채소류 (12.7%), 김치류 (11.2%) 등의 순으로 나타났다. 인체 임파구에서 ex vivo DNA 손상 보호효과는 버섯류에서 가장 높았으며, 그 다음 채소류, 과일류, 해조류, 김치류의 순으로 나타났다. 각 식품군의 페놀함량과 in vitro 항산화 활성, 그리고 ex vivo DNA 보호효과의 순위가 비슷하게 나타났으며 각 지표간의 상관성은 매우 높았다. 한식 식품군 중 버섯류, 과일류, 채소류, 해조류에서 총 페놀함량과 항산화 활성, DNA 손상 보호효과가 높게 나타났다. 각 식품군의 총 페놀함량과 in vitro 항산화 활성, ex vivo DNA 보호효과 지표 간의 상관성은 매우 높았다. 한식의 TDAC에 대한 식품군별 항산화능 기여도는 곡류가 가장 높았고, 그 다음이 과일류, 채소류, 김치류의 순이었다. 이러한 결과는 앞으로 한식의 우수성을 항산화 측면에서 밝히는데 매우 중요한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004; 19(3): 169-185. https://doi.org/10.1093/mutage/geh025
  2. Benzie IF. Evolution of antioxidant defence mechanisms. Eur J Nutr 2000; 39(2): 53-61. https://doi.org/10.1007/s003940070030
  3. Saura-Calixto F, Goni I. Definition of the Mediterranean diet based on bioactive compounds. Crit Rev Food Sci Nutr 2009; 49(2): 145-152. https://doi.org/10.1080/10408390701764732
  4. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet 1993; 342(8878): 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  5. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJ, Hollman PC, Katan MB. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 1995; 155(4): 381-386. https://doi.org/10.1001/archinte.1995.00430040053006
  6. Doll R. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc 1990; 49(2): 119-131. https://doi.org/10.1079/PNS19900018
  7. Hertog MG, van Poppel G, Verhoeven D. Potentially anticarcinogenic secondary metabolites from fruit and vegetables. In: Tomas-Barberan FA, Robins RJ, editors. Phytochemistry of Fruit and Vegetable. Oxford: Clarendon Press; 1997. p.313-329.
  8. Serafini M, Del Rio D, Crozier A, Benzie IF. Effect of changes in fruit and vegetable intake on plasma antioxidant defenses in humans. Am J Clin Nutr 2005; 81(2): 531-532. https://doi.org/10.1093/ajcn.81.2.531
  9. Mullen W, Marks SC, Crozier A. Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J Agric Food Chem 2007; 55(8): 3148-3157. https://doi.org/10.1021/jf062970x
  10. Luthria DL, Pastor-Corrales MA. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J Food Compost Anal 2006; 19(2-3): 205-211. https://doi.org/10.1016/j.jfca.2005.09.003
  11. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem 2011; 59(3): 960-968. https://doi.org/10.1021/jf1040977
  12. Lila MA. Interactions between flavonoids that benefit human health. In: Gould K, Davies KM, Winefield C, editors. Anthocyanins: Biosynthesis, Functions, and Application. New York (NY): Springer; 2009. p. 305-320.
  13. Yang M, Chung SJ, Chung CE, Kim DO, Song WO, Koo SI, Chun OK. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr 2011; 106(2): 254-263. https://doi.org/10.1017/S0007114511000109
  14. Serafini M, Del Rio D. Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 2004; 9(3): 145-152. https://doi.org/10.1179/135100004225004814
  15. Hermsdorff HH, Puchau B, Volp AC, Barbosa KB, Bressan J, Zulet MA, Martinez JA. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab (Lond) 2011; 8: 59. https://doi.org/10.1186/1743-7075-8-59
  16. Wang Y, Yang M, Lee SG, Davis CG, Koo SI, Chun OK. Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults. J Acad Nutr Diet 2012; 112(10): 1626-1635. https://doi.org/10.1016/j.jand.2012.06.007
  17. Rockett JC, Burczynski ME, Fornace AJ Jr, Herrmann PC, Krawetz SA, Dix DJ. Surrogate tissue analysis: monitoring toxicant exposure and health status of inaccessible tissues through the analysis of accessible tissues and cells. Toxicol Appl Pharmacol 2004; 194(2): 189-199. https://doi.org/10.1016/j.taap.2003.09.005
  18. Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiotidis M, Raslova K, Vaughan N. Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 1997; 30(2): 139-146. https://doi.org/10.1002/(SICI)1098-2280(1997)30:2<139::AID-EM6>3.0.CO;2-I
  19. Suh JH, Paek OJ, Kang YW, Ahn JE, Yun JS, Oh KS, An YS, Park SH, Lee SJ. Study on the antioxidant activity in the various vegetables. J Food Hyg Saf 2013; 28(4): 337-341. https://doi.org/10.13103/JFHS.2013.28.4.337
  20. Jeon EJ, Park YK, Kim JS, Kang MH. Comparison of the protective effect of antioxidant vitamins and fruits or vegetable juices on DNA damage in human lymphocyte cells using the comet assay. Korean J Nutr 2004; 37(6): 440-447.
  21. Han JH, Lee HJ, Cho MR, Chang NS, Kim YR, Oh SY, Kang MH. Total antioxidant capacity of the Korean diet. Nutr Res Pract 2014; 8(2): 183-191. https://doi.org/10.4162/nrp.2014.8.2.183
  22. Randhir R, Shetty P, Shetty K. L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochem 2002; 37(11): 1247-1256. https://doi.org/10.1016/S0032-9592(02)00006-7
  23. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 1998; 46(1): 49-53. https://doi.org/10.1021/jf970649w
  24. Lee YJ, Lee SW, Lee SC, Park EJ. Antioxidant activities and antigenotoxic effect of ethanol extracts of Acorus gramineus, Bud of Aralica elata Seem, Capsella bursa-pastoris, and Taraxacum officinale. J Basic Sci 2014; 31: 45-58.
  25. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175(1): 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  26. Park YK, Kim JS, Jeon EJ, Kang MH. The improvement of chaga mushroom (Inonotus obliquus) extract supplementation on the blood glucose and cellular DNA damage in streptozotocin-induced diabetic rats. Korean J Nutr 2009; 42(1): 5-13.
  27. Saura-Calixto F, Goni I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94(3): 442-447. https://doi.org/10.1016/j.foodchem.2004.11.033
  28. Choi SJ, Lee YS, Kim JK, Ki JK, Lim SS. Physiological activities of extract form edible mushrooms. J Korean Soc Food Sci Nutr 2010; 39(8): 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  29. Qi Y, Zhao X, Lim YI, Park KY. Antioxidant and anticancer effects of edible and medicinal mushrooms. Molecules 2015; 20: 19489-19525. https://doi.org/10.3390/molecules201019489
  30. Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park EH. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J Ethnopharmacol 2003; 88(1): 113-116. https://doi.org/10.1016/S0378-8741(03)00178-8
  31. Kim HY, Koo SC, Kang BK, Lee YH, Kim HT, Yun HT, Baek IY, Jeong HS, Choi MS. Growth characteristics of sprouts and changes of antioxidant activities in common bean (Phaseolus vulgaris L.) with cultivated temperature. Korean J Crop Sci 2014; 59(2): 201-207. https://doi.org/10.7740/kjcs.2014.59.2.201
  32. Woo KS, Seo HI, Lee YH, Kim HY, Ko JY, Song SB, Lee JS, Jung KY, Nam MH, Oh IS, Jeong HS. Antioxidant compounds and antioxidant activities of sweet potatoes with cultivated conditions. J Korean Soc Food Sci Nutr 2012; 41(4): 519-525. https://doi.org/10.3746/jkfn.2012.41.4.519
  33. Kim SM, Na MS. A study on skin care effects of rapeseed meal extract. KSBB J 2013; 28(3): 177-184. https://doi.org/10.7841/ksbbj.2013.28.3.177
  34. Lee MH, Kim JM, Park EJ. Antioxidant and antigenotoxic effect of Sansuyu fruit (Corni fructus) extracted with various solvents. Cancer Prev Res 2013; 18(1): 66-73.
  35. Jayakumar R, Kanthimathi MS. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotineinduced cancer cell migration. Food Chem 2012; 134(3): 1580-1584. https://doi.org/10.1016/j.foodchem.2012.03.101
  36. Madrigal-Bujaidar E, Diaz Barriga S, Mota P, Guzman R, Cassani M. Sister chromatid exchanges induced in vitro and in vivo by an extract of black pepper. Food Chem Toxicol 1997; 35(6): 567-571. https://doi.org/10.1016/S0278-6915(97)00024-0
  37. Kim SH, Kim MS, Lee MS, Park YS, Lee HJ, Kang SA, Lee HS, Lee KE, Yang HJ, Kim MJ, Lee YE, Kwon DY. Korean diet (Kdiet): characteristics and historical background. J Ethn Food 2016; 3(1): 26-31. https://doi.org/10.1016/j.jef.2016.03.002
  38. Mellen PB, Walsh TF, Herrington DM. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 2008; 18(4): 283-290. https://doi.org/10.1016/j.numecd.2006.12.008
  39. Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA, Willett WC. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr 2002; 76(3): 535-540. https://doi.org/10.1093/ajcn/76.3.535
  40. Enright L, Slavin J. No effect of 14 day consumption of whole grain diet compared to refined grain diet on antioxidant measures in healthy, young subjects: a pilot study. Nutr J 2010; 9(1): 12-19. https://doi.org/10.1186/1475-2891-9-12
  41. Andersson A, Tengblad S, Karlström B, Kamal-Eldin A, Landberg R, Basu S, Aman P, Vessby B. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr 2007; 137(6): 1401-1407. https://doi.org/10.1093/jn/137.6.1401

Cited by

  1. 건강한 성인의 glutathione S-transferase M1과 T1 유전자 다형성에 따른 한식에서의 식물성 식품군과 한식의 DNA 손상 감소 효과 vol.50, pp.1, 2016, https://doi.org/10.4163/jnh.2017.50.1.10
  2. 황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화 vol.52, pp.5, 2019, https://doi.org/10.4163/jnh.2019.52.5.413
  3. Anti-inflammatory and Matrix Metallopeptidase-1-Inhibitory Effects of the Cassia obtusifolia L. Seed Extract on Particulate Matter-induced Skin vol.19, pp.3, 2021, https://doi.org/10.20402/ajbc.2021.0183