DOI QR코드

DOI QR Code

Isoflavone Composition and Estrogenic Activity of Germinated Soybeans (Glycine max) according to Variety

품종별 발아 콩(Glycine max)의 아이소플라본 조성 및 In Vitro 에스트로겐 유사활성

  • Kim, Min Young (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jang, Gwi Yeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Ji, Yeong Mi (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Kyung Mi (Department of Crop Science, Chungbuk National University) ;
  • Kim, Hongsik (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Junsoo (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jeong, Heon Sang (Department of Food Science and Biotechnology, Chungbuk National University)
  • 김민영 (충북대학교 식품생명공학과) ;
  • 장귀영 (충북대학교 식품생명공학과) ;
  • 지영미 (충북대학교 식품생명공학과) ;
  • 김경미 (충북대학교 식물자원학과) ;
  • 김홍식 (농촌진흥청 국립농업과학원) ;
  • 이준수 (충북대학교 식품생명공학과) ;
  • 정헌상 (충북대학교 식품생명공학과)
  • Received : 2016.07.28
  • Accepted : 2016.09.09
  • Published : 2016.10.31

Abstract

This study was performed to investigate the changes in isoflavone composition, estrogenic activity and antiestrogenic activity of soybean cultivars of different isoflavone content (Aga 8, Uram, Cheongja 3, and Dawon) with germination. Total isoflavone contents of Aga 8, Dawon and Cheongja 3 was increased from 2,671.74, 261.08 and 2,240.08 to 2,977.50, 966.13 and $2,354.11{\mu}g/g$, respectively after germination except for Uram cultivars, and highest contents of total isoflavone showed $2,977.50{\mu}g/g$ and $2,354.11{\mu}g/g$, respectively in Aga 8 and Cheongja 3 after germination. MTT cell proliferation assay using MCF-7 cells revealed that germinated soybean of Aga 8 and Cheonja 3 obtained not only contained a high content of isoflavone but also had estrogenic activity. Estrogenic activity of Aga 8 and Cheongja 3 soybean extracts increased from 116.21% and 101.60% to 135.34% and 121.05% after germination. These results suggest that germinated soybean of Aga 8 and Cheongja 3 might have a potential preventive effect on estrogen-deficient diseases.

본 연구에서는 아이소플라본 함량이 서로 다른 한국산 4 품종(아가 8호, 우람, 다원콩 및 청자 3호)의 콩에 대하여 발아에 따른 아이소플라본 조성 및 에스트로겐 유사활성의 변화를 살펴보았다. 아이소플라본 조성은 발아에 따라 총아이소플라본, glycosides 계열, acetyl glycoside 계열 및 비배당체는 증가하였지만, malonyl glycosides 계열은 감소하였다. 품종에 따라 발아 전에는 아가 8호> 청자3호> 우람> 다원 순으로 총아이소플라본 함량이 높게 나타났고, 발아 후에는 다원 품종이 우람 품종에 비해 높게 나타났다. 에스트로겐 유사활성은 아이소플라본 함량이 높은 아가 8호 및 청자 3호가 $25{\mu}g/mL$의 농도에서 발아 후 135.34 및 121.05%의 높은 세포 증식 효과를 보였다. 또한, 에스트로겐 유사활성이 높게 나타난 아가 8호 및 청자 3호의 발아콩 추출물은 에스트로겐과 병용 처리 시 낮은 세포생존률을 보여 항에스트로겐 유사활성을 보였다. 이러한 결과로부터 아이소플라본 함량이 높은 아가 8호 및 청자 3호에서 에스트로겐 유사활성이 높게 나타나 품종에 따른 영향을 크게 받는 것으로 나타났으며, 아이소플라본 함량과 에스트로겐 유사활성간의 높은 상관관계를 확인하였다.

Keywords

References

  1. Preuss HG. 1993. Nutrition and diseases of women: cardiovascular disorders. J Am Coll Nutr 12: 417-425. https://doi.org/10.1080/07315724.1993.10718331
  2. Belchetz PE. 1994. Hormonal treatment of postmenopausal women. N Engl J Med 330: 1062-1071. https://doi.org/10.1056/NEJM199404143301508
  3. Elfituri A, Sherif F, Elmahaishi M, Chrystyn H. 2005. Two hormone replacement therapy (HRT) regimens for middleeastern postmenopausal women. Maturitas 52: 52-59. https://doi.org/10.1016/j.maturitas.2004.12.003
  4. Murkies A, Dalais FS, Briganti EM, Burger HG, Healy DL, Wahlqvist ML, Davis SR. 2000. Phytoestrogens and breast cancer in postmenopausal women: a case control study. Menopause 7: 289-296. https://doi.org/10.1097/00042192-200007050-00003
  5. Setchell KD, Cassidy A. 1999. Dietary isoflavones: biological effects and relevance to human health. J Nutr 129: 758S-767S. https://doi.org/10.1093/jn/129.3.758S
  6. Lee SJ, Ahn JK, Kim SH, Kim JT, Han SJ, Jung MY, Chung IM. 2003. Variation in isoflavone of soybean cultivars with location and storage duration. J Agric Food Chem 51: 3382-3389. https://doi.org/10.1021/jf0261405
  7. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS. 2007. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci Biotechnol 16: 1006-1010.
  8. Ko JY, Song SB, Lee JS, Kang JR, Seo MC, Oh BG, Kwak DY, Nam MH, Jeong HS, Woo KS. 2011. Changes in chemical components of foxtail millet, proso millet, and sorghum with germination. J Korean Soc Food Sci Nutr 40: 1128-1135. https://doi.org/10.3746/jkfn.2011.40.8.1128
  9. Lee EH, Kim CJ. 2008. Nutritional changes of buckwheat during germination. Korean J Food Cult 23: 121-129.
  10. Chung DS, Kim HK. 1998. Changes of protein and lipid composition during germination of Perilla frutescens seeds. Korean J Life Sci 8: 318-325.
  11. Kim JS, Kim JG, Kim WJ. 2004. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J Food Sci Technol 36: 294-298.
  12. Lopez A, El-Naggar T, Duenas M, Ortega T, Estrella I, Hernandez T, Gomez-Serranillos MP, Palomino OM, Carretero ME. 2003. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem 138: 547-555.
  13. Wang H, Murphy PA. 1994. Isoflavone content in commercial soybean foods. J Agric Food Chem 42: 1666-1673. https://doi.org/10.1021/jf00044a016
  14. Kim HY, Hwang IG, Kim TM, Park DS, Kim JH, Kim DJ, Lee JS, Jeong HS. 2011. Antioxidant and angiotensin converting enzyme I inhibitory activity on different parts of germinated rough rice. J Korean Soc Food Sci Nutr 40: 775-780. https://doi.org/10.3746/jkfn.2011.40.6.775
  15. Herbert V, Lau KS, Gottlieb CW, Bleicher SJ. 1965. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 25: 1375-1384. https://doi.org/10.1210/jcem-25-10-1375
  16. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19: 1518-1520. https://doi.org/10.1248/bpb.19.1518
  17. Perez P, Pulgar R, Olea-Serrano F, Villalobos M, Rivas A, Metzler M, Pedraza V, Olea N. 1998. The estrogenicity of biophenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ Health Perspect 106: 167-174. https://doi.org/10.1289/ehp.98106167
  18. Wang J, Hu F, Luo Y, Luo H, Huang N, Cheng F, Deng Z, Deng W, Zou K. 2014. Estrogenic and anti-estrogenic activities of hispolon from Phellinus lonicerinus (Bond.) Bond. et sing. Fitoterapia 95: 93-101. https://doi.org/10.1016/j.fitote.2014.03.007
  19. Wang H, Murphy PA. 1994. Isoflavone composition of American and Japanese soybeans in lowa: effects of variety, crop year, and location. J Agric Food Chem 42: 1674-1677. https://doi.org/10.1021/jf00044a017
  20. Wang F, Wang H, Wang C, Fang F, Lai J, Wu T, Tsao R. 2015. Isoflavone, ${\gamma}$-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. J Funct Foods 14: 596-604. https://doi.org/10.1016/j.jff.2015.02.016
  21. Sriraman S, Ramanujam GM, Ramasamy M, Dubey GP. 2015. Identification of beta-sitosterol and stigmasterol in Bambusa bambos (L.) Voss leaf extract using HPLC and its estrogenic effect in vitro. J Pharm Biomed Anal 115: 55-61. https://doi.org/10.1016/j.jpba.2015.06.024
  22. Lee DG, Lee SH. 2007. Verification of cytotoxicity against cancer cell line and estrogen-like activity of Cheongkukjang. Korean J Oriental Physiology & Pathology 21: 153-157.
  23. Vincent A, Fitzpatrick LA. 2000. Soy isoflavones: are they useful in menopause? Mayo Clin Proc 75: 1174-1184. https://doi.org/10.4065/75.11.1174
  24. Zhang EJ, NG KM, Luo KO. 2007. Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. J Agric Food Chem 55: 6940-6950. https://doi.org/10.1021/jf0708903
  25. Levis S, Strickman-Stein N, Doerge DR, Krischer J. 2010. Design and baseline characteristics of the soy phytoestrogens as replacement estrogen (SPARE) study-a clinical trial of the effects of soy isoflavones in menopausal women. Contemp Clin Trials 31: 293-302. https://doi.org/10.1016/j.cct.2010.03.007

Cited by

  1. ) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pre-germination vol.38, pp.2, 2018, https://doi.org/10.1080/08957959.2018.1459599
  2. Comparison of primary and secondary metabolite compositions and antioxidant effects of specific soybean cultivars vol.26, pp.5, 2016, https://doi.org/10.11002/kjfp.2019.26.5.555
  3. 탈피대두를 이용한 신속 두유 제조 및 품질 특성 vol.32, pp.6, 2016, https://doi.org/10.9799/ksfan.2019.32.6.643