DOI QR코드

DOI QR Code

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models

열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석

  • Lee, Wonoh (School of Mechanical Engineering, Chonnam National University)
  • Received : 2016.09.26
  • Accepted : 2016.10.28
  • Published : 2016.10.31

Abstract

In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

본 연구에서는 유리섬유/폴리프로필렌 기반의 열가소성 복합재의 열성형 시험 평가를 위해, 성형온도에서의 인장 및 면내 전단 물성 시험을 실시하였고, 이를 비직교 구성방정식을 이용하여 정량화 하였다. 이를 통해 실험값과 잘 일치하는 고온에서의 인장 및 전단 물성값을 수식화하여 얻을 수 있었다. 열성형 시험을 위해 반구돔 시험을 실시하였고, 이형제 사용 유무 및 홀더의 무게를 달리해가며 성형품의 최종형상을 비교하였다. 그 결과 이형제를 사용하면 성형품의 대칭성이 확보되고 주름 개선 효과에 유리하다는 것을 확인하였고, 적당한 힘의 홀딩력 제어가 필수적이라는 것을 알 수 있었다. 더 나아가 비직교 구성방정식이 고려된 열성형 수치해석을 실시하여 실험 결과와 유사한 양상을 확인할 수 있었고, 홀딩력이 낮을 수록 주름이 많아지고, 마찰력이 클수록 더 많은 펀치력을 필요로 함을 확인하였다.

Keywords

References

  1. Kong, H., Mouritz, A.P., and Paton, R., "Tensile Extension Properties and Deformation Mechanism of Multiaxial Non-crimp Fabrics," Composite Structures, Vol. 66, 2004, pp. 249-259. https://doi.org/10.1016/j.compstruct.2004.04.046
  2. Long, A.C., Wilks, C.E., and Rudd, C.D., "Experimental Characterisation propylene Composite," Composites Science and Technology, Vol. 61, 2001, pp. 1591-1603. https://doi.org/10.1016/S0266-3538(01)00059-8
  3. Lee, W., Byun, J.-H., and Cao, J., "Non-orhtogonal Constitutive Equations for Woven Fabric Textile Composites with Conjoined Tension and Shear Behaviors", Proceedings of The Korean Society for Composite Materials 2008 Fall, 2008, pp. 123-126.
  4. Yu, W.R., Zampaloni, M., Pourboghrat, F., Chung, K., and Kang, T.J., "Sheet Hydroforming of Woven FRT Composites: Non-orthogonal Constitutive Equation Considering Shear Stiffness and Undulation of Woven Structure," Composite Structures, Vol. 61, 2003, pp. 353-362. https://doi.org/10.1016/S0263-8223(03)00056-4
  5. Harrison, P., Clifford, M.J., and Long, A.C., "Shear Characterization of Viscous Woven Textile Composites: A Comparison between Picture Frame and Bias Extension Experiments," Composites Science and Technology, Vol. 64, 2004, pp. 1453-1465. https://doi.org/10.1016/j.compscitech.2003.10.015
  6. Lee, W., Um, M.-K., Byun, J.-H., and Cao, J., "Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests", The Journal of the Korean Society for Composite Materials, Vol. 23, 2010, pp. 8-14.
  7. Peng, X.Q., and Cao, J., "A Continuum Mechanics-based Non-orthogonal Constitutive Model for Woven Composite Fabrics," Composites Part A: Applied Science and Manufacturing, Vol. 36. 2005, pp. 859-874. https://doi.org/10.1016/j.compositesa.2004.08.008
  8. Lee, W., Cao, J., Badel, P., and Boisse, P., "Non-orthogonal Constitutive Model for Woven Composites Incorporating Tensile Effect on Shear Behavior," International Journal of Material Forming, Vol. 1, 2008, pp. 891-894. https://doi.org/10.1007/s12289-008-0239-1
  9. Lee, W., and Cao, J., "Numerical Simulations on Double-dome Forming of Woven Composites Using the Coupled Non-orthogonal Constitutive Model," International Journal of Material Forming, Vol. 2, 2009, pp. 145-148.

Cited by

  1. 계면 특성을 고려한 무작위 섬유배치를 갖는 단방향 복합재료의 가로방향 기계적 물성 예측 및 보정 vol.32, pp.5, 2016, https://doi.org/10.7234/composres.2019.32.5.270