DOI QR코드

DOI QR Code

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells

고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발

  • Lim, Jun Woo (LANL-CBNU Engineering Institute Korea, Chonbuk National University) ;
  • Kim, Minkook (School of Mechanical Aerospace & Systems Engineering, KAIST) ;
  • Lee, Dai Gil (School of Mechanical Aerospace & Systems Engineering, KAIST)
  • Received : 2016.09.26
  • Accepted : 2016.10.28
  • Published : 2016.10.31

Abstract

Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

열경화성 탄소 섬유 복합재료 분리판은 높은 기계적 특성뿐만 아니라 높은 내산성을 갖으나, 높은 제조단가 및 낮은 자체저항이 극복해야 할 가장 큰 장애물이다. 따라서 본 연구에서는, 열가소성 폴리머를 복합재료 분리판의 기지로 적용하여 분리판 생산성과 자체저항이 모두 증가된 열가소성 탄소 복합재료 분리판을 개발하였다. 전기 전도도 및 기계 강도를 증가시기키 위하여 평직 형태의 탄소 섬유 직물을 사용하였으며, 분리판의 자체 저항을 감소시키기 위하여 전도성 나노입자를 열가소성 기지에 혼합하였다. 개발된 분리판의 면적 비저항 및 기계물성을 고온 연료전지 작동 온도 및 스택의 체결압에 따라 측정하였다.

Keywords

References

  1. Taccani, R., and Nuliani, N., "Effect of Flow Field Design on Performances of a High Temperature PEM Fuel Cell," International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 10282-10287. https://doi.org/10.1016/j.ijhydene.2010.10.026
  2. Lim, J.W., Kim, M.K., and Lee, D.G., "Conductive Particles Embedded Carbon Composite Bipolar Plates for Proton Exchange Membrane Fuel Cells," Composite Structures, Vol. 108, 2014, pp. 757-766. https://doi.org/10.1016/j.compstruct.2013.10.021
  3. Kakati, B.K., Sathiyamoorthy, D., and Verma, A., "Electrochemical and Mechanical Behavior of Carbon Composite Bipolar Plate for Fuel Cell," International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 4185-4194. https://doi.org/10.1016/j.ijhydene.2010.02.033
  4. Lim, J.W., and Lee, D.G., "Development of Composite-metal Hybrid Bipolar Plates for PEM Fuel Cells," International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 12504-12512. https://doi.org/10.1016/j.ijhydene.2012.06.002
  5. Lim, J.W., and Lee, D.G., "Carbon Composite Hybrid Bipolar Plates with Bypass-connected Gas Diffusion Layers for PEM Fuel Cells," Composite Structures, Vol. 95, 2013, pp. 557-563. https://doi.org/10.1016/j.compstruct.2012.08.030
  6. Medalia, A.I., "Morphology of Aggregates: VI. Effective Volume of Aggregates of Carbon Black from Electron Microscopy; Application to Vehicle Absorption and to Die Swell of Filled Rubber," Journal of Colloid and Interface Science, Vol. 32, 1970, pp. 115-131. https://doi.org/10.1016/0021-9797(70)90108-6
  7. Medalia, A.I., "Effective Degree of Immobilization of Rubber Occluded Within Carbon Black Aggregates," Rubber Chemistry and Technology, Vol. 45, 1972, pp. 1171-1194. https://doi.org/10.5254/1.3544731
  8. Janzen, J., "On the Critical Conductive Filler Loading in Antistatic Composites," Journal of Applied Physics, Vol. 46, 1975, pp. 966-969. https://doi.org/10.1063/1.321629
  9. BBST. Boonstra, EM. Dannenberg, "Electrical Conductivity of Rubber-Carbon Black Vulcanizates," Industrial & Engineering Chemistry, Vol. 46, 1954, pp. 218-227. https://doi.org/10.1021/ie50529a064

Cited by

  1. 저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성 vol.31, pp.6, 2018, https://doi.org/10.7234/composres.2018.31.6.412