DOI QR코드

DOI QR Code

Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method

다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구

  • Kil, Min-Gyu (Department of Aerospace Engineering, Pusan National University) ;
  • Park, Eu-Tteum (Department of Aerospace Engineering, Pusan National University) ;
  • Song, Woo-Jin (Graduate School of Convergence Science, Pusan National University) ;
  • Kang, Beom-Soo (Department of Aerospace Engineering, Pusan National University)
  • Received : 2016.08.12
  • Accepted : 2016.10.31
  • Published : 2016.10.31

Abstract

The fiber metal laminates have been widely used at aerospace industry due to outstanding fatigue characteristic, corrosion resistance and impact resistance and so forth. The objective of this research is to establish the proper manufacturing variables for enhancing the interfacial energy release rate of fiber metal laminates using Taguchi method. The major variables of the manufacturing process are surface treatment, pre-specified temperature holding time and additional pressure. In order to determine the interfacial adhesive strength, the double cantilever beam and end-notched flexure tests were conducted. Afterward, Mode I and II energy release rates at various conditions were introduced signal-to-noise ratio with respect to each condition. Finally, the most efficient manufacturing variables are recognized using larger-the-better characteristic.

섬유금속적층판은 우수한 피로특성, 내부식성, 충격저항 등으로 인하여 항공우주산업에서 널리 사용되고 있다. 본 논문에서는 다구찌 기법을 사용하여 섬유금속적층판의 내부 에너지 해방률을 향상시킬 수 있는 공정 조건을 도출하는 절차에 대해 실험적 연구가 수행되었다. 내부 접착력 향상을 위한 제조공정을 도출하기 위해서, 표면처리, 접착필름의 용융점 유지시간 및 초기 압력이 서로 다르다는 조건하에서 제작한 시편들에 대해서 Double cantilever beam과 End-notched flexure 시험을 수행하였다. 시험으로부터 모드 I과 모드 II의 에너지 해방률을 측정한 후, 다구찌 기법의 망대특성에 의한 신호 잡음비를 비교하여 효율적인 제조공정을 도출하였다.

Keywords

References

  1. Jang, B.Z., Advanced Polymer Composite: Principles and Applications, CRC Press, ASM International, US, 1994.
  2. Woo, S.C., and Choi, N.S., "Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates" Transaction of the Korean Society of mechanical engineers, Vol. 29, No. 6, 2005, pp. 876-888. https://doi.org/10.3795/KSME-A.2005.29.6.876
  3. Asundi, A., and Choi, A.Y.N., "Fiber Metal Laminate: An Advanced Material for Future Aircraft," Journal of Material Processing Technology, Vol. 63, No. 1, 1997, pp. 384-394. https://doi.org/10.1016/S0924-0136(96)02652-0
  4. Caprino, G., Spataro, S., and Del Luongo, "Low-velocity Impact Behavior of Fiberglass-aluminum Laminate," Composites: Part A, Vol. 35, No. 5, 2012, pp. 189-205.
  5. Kim, S.J., Kim, T.U., and Kim, S.H., "The Study on Structural Performance of Fiber Metal Laminates," Korea Aerospace Research Institute, Vol. 13, No. 1, 2014, pp. 20-26.
  6. Lee, J.H., and Kim, Y.H., "Pre-treatment Condition and Curing Method for Fabrication of Al7075/CFRP Laminates" Journal of the Korean Society for Composite Materials, Vol. 13, No. 4, 2000, pp. 42-53.
  7. Kim, S.Y., Choi, W.J., Park, S.Y., and Moon, C.R., "Thermal Residual Stress Behavior in Fiber Metal Laminates", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 33, No. 6, 2005, pp. 39-44. https://doi.org/10.5139/JKSAS.2005.33.6.039
  8. Chung, W.J., Lee, C.M., Cho, D.Y., and Yoon, S.H., "Study on Decreasing Displacement of the MC(machining center) Moved Column with High-speed for the Taguchi Method", Proceedings of KSPE 2014 Spring Conference, Gyeong Ju, Korea, 2006, pp. 445-446.
  9. Han, J.T., Lee, D.H., and Cho, K.W., "Adhesion Science and Technology", International Conference on Engineering Education, San Juan, Puerto Rico, Vol. 7, No. 4, 2004, pp. 43-54.
  10. Evans, J.R., and Packham, D.E., Journal of Adhesion, Taylor & Francis, UK, 1979.
  11. ASTM D5528-13, Standard Test Method for Mode I inter laminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, 2013.
  12. AITM 1.0006, Determination of Fracture Toughness Energy of CFRP bonded joint - Mode II, 2006.
  13. Tsai, G.C., "Design of Composite ENF Specimens and Conduct Three-Point Test to Calculate Mode II Fracture Toughness," 9th International Conference on Engineering Education, San Juan, Puerto Rico, July 2006, pp. 18-22.
  14. Robert, L., Mason, F., Richard Gunst, L., and Jarnes Hess, Statistical Design and Analysis of Experiments, Second Edition, A John Wiley and Sons Publication, Hobeken New Jersey, US, 2003.
  15. James, J.S., Alexander, E.B., and Philip, D.B., "Carbon Nanotube Shear-pressed Sheet Interleaves for Mode I Interlaminar Fracture Toughness Enhancement", Composites Part A: Applied Science and Manufacturing, Vol. 80, 2016, pp. 127-137. https://doi.org/10.1016/j.compositesa.2015.10.014

Cited by

  1. 자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가 vol.30, pp.2, 2016, https://doi.org/10.7234/composres.2017.30.2.158
  2. CFRP/금속간 접합력 강화를 위한 접합공정 연구 vol.30, pp.6, 2017, https://doi.org/10.7234/composres.2017.30.6.416