DOI QR코드

DOI QR Code

Preparation of Paper from Pitch-based Activated Carbon Fibers and Adsorption Characteristics

피치계 활성탄소섬유를 이용한 페이퍼 제조 및 흡착특성

  • Kim, Hyeon-Seok (Korea Institute of Convergence Textile(KICTEX)) ;
  • Kim, Hak-Yong (Department of BIN Convergence Technology, Chonbuk National University) ;
  • Jung, Woo-Young (Korea Institute of Convergence Textile(KICTEX))
  • Received : 2016.08.16
  • Accepted : 2016.10.31
  • Published : 2016.10.31

Abstract

In this work, we have prepared the filter papers with the pitch-based activated carbon fibers and the binder fibers using wet-laid process. The influence of the binder fiber on the porosity of the filter papers has been investigated by using nitrogen adsorption isotherms at 77 K and a scanning electron microscope (SEM). As a result, the specific surface area has increased with an decrease in the content of binder fiber. It has been shown that the optimum ratio of pitch-based activated carbon fibers and the binder fibers is 70:30, resulting in high porosity, excellent bonding strength, large specific surface area ($650.4m^2/g$) and high noxious gas removal efficiency (86.9%). In addition, it has been observed that the mean pore size distribution of the fiber papers has not been affected by the binder fiber.

본 연구에서는 습식공정을 이용한 Pitch계 활성탄소섬유와 바인더 섬유를 이용하여 필터 페이퍼를 제조하였다. 필터 페이퍼 내 바인더 섬유의 함량이 기공특성에 미치는 영향을 알아보기 위해 77 K에서 질소 흡착 등 온선과 주사 전자 현미경을 통해 흡착특성을 비교 분석하였다. Pitch계 활성탄소섬유와 바인더 섬유와의 최적 비율은 70:30 비율로 가장 균일한 기공 및 결합력이 좋은 페이퍼의 모습을 보였으며, 바인더 섬유의 함량이 적을수록 높은 비표면적 값을 확인하였다. Pitch계 활성탄소섬유와 바인더 섬유의 종류와는 상관없이 70:30 비율에서 최적의 페이퍼가 제조되었으며, $650.4m^2/g$의 비표면적 값과 86.9%의 유해가스 제거율을 확인하였다. 또한 필터 페이퍼의 평균 기공 크기 분포는 바인더 섬유의 영향을 받지 않는 것으로 관찰되었다.

Keywords

References

  1. J. B. Donnet, Carbon Fibers, ed Jean. Baptiste, 1, 250 Marccel Dekker, New York, 1998.
  2. M. Suzuki, "Activated Carbon Fiber: Fundamentals and Applications", Carbon, Vol. 32, 1994, pp. 577-586. https://doi.org/10.1016/0008-6223(94)90075-2
  3. M. Suzuki, Adsortion Engineering, ed. J. Y. Son, 1, 24, Hyung sul, Seoul, 2000.
  4. Kang, S.J., Kim, K.J., Kim, M.S., Kim, B.J., Kim, S., Roh, J.S., Riu, D.H., Park, S.J., Seo, M.K., Shul, Y.G., An, K.H., Yang, K.S., Ryu, S.K., Lee, G.W., Lee, Y.S., Lee, J.M., Lee, C.H., Lim, S.Y., Lim, Y.S., Jung, D.H., Cho, K.Y., Cho, D.H., Chi, S.H., and Hong, I.P. "Handbook of Carbon Materials Applications", Daeyeong, Seoul, 2008, 619.
  5. Ryu, Z., Zheng, J., Wang, M., and Zang, B., "Nitrogen Adsorption Studies of PAN-Based Activated Carbon Fibers Prepared by Different Activation Methods", J. Colloid Interface Science, Vol. 230, 2000, pp. 312-319. https://doi.org/10.1006/jcis.2000.7078
  6. Oh, W.C., and Park, C.S., "Electro-chemical Removal Effects for the Pollutants with K-ACFs", J. Ceramic Processing Research, Vol. 7, 2006, pp. 37-48.
  7. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and T. Siemieniewska, "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984)", Pure Appl. Chem., Vol. 57, 1985, pp. 603-619. https://doi.org/10.1351/pac198557040603
  8. Kim, M.I., and Lee, Y.-S., "Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics", Applied Chemistry for Engineering, Vol. 25, No. 2, April 2014, pp. 193-197. https://doi.org/10.14478/ace.2014.1006
  9. Suzuki, M., Adsortion Engineering, ed. J. Y. Son, 1, 15, Hyung sul, Seoul, 2000.
  10. Lee, J.-J., and Kim, Y.-C., "The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and $SO_2$ Adsorption Characteristics by the Impregnated Nanoparticles", J. Korean Ind. Eng. Chem., Vol. 17, No. 5, October 2006, pp. 532-538.
  11. Moon, J., Park, J.A., Lee, S.J., Zyung, T., and Kim, I.D., "Pddoped $TiO_2$ Nanofiber Networks for Gas Sensor Applications", Sens. Actuators B., Vol. 149, 2010, pp. 301-305. https://doi.org/10.1016/j.snb.2010.06.033
  12. Nan, D., Liu, J., and Ma, W., "Electrospun Phenolic Resinbased Carbon Ultrafine Fibers with Abundant Ultrasmall Micropores for $CO_2$ Adsorption", Chem. Eng. J., Vol. 276, 2015, pp. 44-50. https://doi.org/10.1016/j.cej.2015.04.081
  13. Hwang, S.-H., Park, H.-S., Kim, D.-W., and Jo, Y.-M., "Preparation of Activated Carbon Fiber Adsorbent for Enhancement of $CO_2$Capture Capacity", Journal of Korean Society for Atmospheric Environment, Vol. 31, No. 6, 2015, pp. 538-547. https://doi.org/10.5572/KOSAE.2015.31.6.538
  14. Koo, Y.M., Kim, J., Kim, B.R., and Seo, D., "Removal of Suspended Solids from Stormwater Runoff Using a Fabric Filter System", J. Korean Soc. Environ. Eng., Vol. 37, No. 3, 2015, pp. 165-174. https://doi.org/10.4491/KSEE.2015.37.3.165
  15. Nimmo, J.R., Porosity and Pore Size Distribution, in Hillel, D., ed. Encyclopedia of Soils in the Environment: London, Elsevier, Vol. 3, 2004, pp. 295-303.