DOI QR코드

DOI QR Code

Interfacial and Mechanical Properties of MGF Reinforced p-DCPD Composites with Surface Treatments

MGF 표면처리에 따른 p-DCPD 복합재료의 계면 및 기계적 특성 연구

  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Ha, Jung-Chan (Composite R&D Center, Dong-Sung TCS) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University)
  • Received : 2016.07.04
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

p-DCPD (poly dicyclopentadiene) is the resin that the versatile mechanical properties can be changeable via the control of inner monomer and catalysts. In this work, to improve the strength of composites, surface treated MGF (milled glass fiber) was used as an reinforcement in p-DCPD by molybdenum (Mo) catalyst matrix. The optimum concentration of surface treatment was obtained and the cohesion of MGF themselves increased with concentration. In case of 0.2 wt% silane concentration, the maximized mechanical properties of MGF/p-DCPD composite exhibited because of minimized MGF cohesion. When butyl silane showing minimizing cohesion was used as the optimized alkyl length, high tensile and flexure strength exhibited due to the steric hindrance effect among MGFs. Mechanical and their fractured surfaces of MGF/p-DCPD composites was compared for 4 different chemical functional groups. Norbornene functional groups containing similar chemical structure to DCPD matrix exhibited higher interfacial adhesion between MGFs and DCPD matrix.

p-DCPD 수지는 내부 모노머와 촉매의 조절을 통해 다양한 기계적 특성 변화가 가능한 수지이다. 본 연구에서는 몰리브덴(Mo) 촉매를 사용한 p-DCPD 기지에 여러 가지로 표면처리된 MGF(milled glass fiber)를 강화제로 제조된 MGF/p-DCPD의 기계적 물성 변화를 조사하였다. 최적의 표면처리 농도를 확인하였으며, 표면처리 농도가 증가할수록 MGF의 응집은 커졌다. 0.2 wt% 사일렌 농도를 사용할 경우 MGF의 응집을 최소로 하고 최대의 MGF/p-DCPD 복합재료 강도를 나타내었다. 또한, MGF간 입체장애 효과로 응집을 최소화하는 최적 길이인 부틸 알킬체인 사일렌을 사용했을 경우, 큰 인장 및 굽힘강도를 나타내었다. 4가지 화학적 작용기의 차이에 따른 MGF/p-DCPD의 기계적 물성 및 그 파단면을 비교하였다. 노보넨기의 경우, 기지인 DCPD 수지와 화학적 구조가 유사하여, DCPD 수지와 MGF 강화제 간의 계면 물성을 증대시켰다.

Keywords

References

  1. Abadie, M.J., Dimonie, M., Couve, C., and Dragutan, V., "New Catalysts for Linear Polydicyclopentadiene Synthesis," European Polymer Journal, Vol. 36, 2000, pp. 1213-1219. https://doi.org/10.1016/S0014-3057(99)00185-8
  2. Lyapkow, A.A., Gvozdkov, E.L., Tarakanovskat, A.N., Tarnovskaya, O.D., and Yakovleva, Y.S., "Oxidation and Structuring of Polydicyclopentadiene Thin Layers," XV International Scientific Conference, 2014, pp. 223-228.
  3. Jeong, W., and Kessler, M.R., "Toughness Enhancement in ROMP Functionalized Carbon Nanotube/ Polydicyclopentadiene Composites," Chemical Materials, Vol. 20, 2008, pp. 7060-7068. https://doi.org/10.1021/cm8020947
  4. Dacidson, T.A., and Wagener, K.B., "The Polymerization of Dicyclopentadiene: An Investigation of Mechanism," Journal of Molecular Catalysis A: Chemical, Vol. 133, 1998, pp. 67-74. https://doi.org/10.1016/S1381-1169(98)00091-0
  5. Hine, P.J., Leejarkpai, T., Khosravi, E., Duckett, R.A., and Feast, W.J., "Structure Property Relationships in Linear and Cross-Linked Poly(imidonorbornenes) Prepared Using Ring Opening Metathesis Polymerisation (ROMP)," Polymer, Vol. 42, 2001, pp. 9413-9422. https://doi.org/10.1016/S0032-3861(01)00488-8
  6. Pan, B., Zhao, J., Zhang, Y., and Zhang, Y., "Dry Sliding Behaviors of Polydicyclopentadiene under Elevated Sliding Velocity," IERI Procedia, 2012, pp. 19-24.
  7. Guadagno, L., Longo, P., Raimondo, M., Naddeo, C., Mariconda, A., Vittoria, V., Iannuzzo, G., and Russo, S., "Use of Hoveyda-Grubbs' Second Generation Catalyst in Self-Healing Epoxy Mixtures," Composites Parts: B, Vol. 42, 2011, pp. 296-301. https://doi.org/10.1016/j.compositesb.2010.10.011
  8. Knorr, D.B., Masser, K.A., Elder, R.M., Sirk, T.W., Hindenlang, M.D., Yu, J.H., Richardson, A.D., Boyd, S.E., Spurgeon, W.A., and Lenhart, J.L., "Overcoming The Structural Versus Energy Dissipation Trade-off in Highly Crosslinked Polymer Networks: Ultrahigh Strain Rate Response in Polydicyclopentadiene," Composites Science and Technology, Vol. 114, 2015, pp. 17-25. https://doi.org/10.1016/j.compscitech.2015.03.021
  9. Vallons, K.A.M., Drozdzak, R., Charret, M., and Lomov, S.V., "Exploratory Study on the Behaviour of Glass/p-DCPD Composites", 20th International Conference on Composite Materials, Copenhagen, 2015.
  10. Xia, S., Jong, K.L., and Michael, R.K., "Poly-Dicyclopentadiene-Wollastonite Composites Toward Structural Applications," Journal of Composites Materials, Vol. 48, 2013, pp. 2023-2031.
  11. Yang, D., Huang, W., Yu, J., Jiang, J., Zhang, L., and Xie, M., Wang, Z.J., Kong, J., Lee, W.I., Park, J.G., and Park, J.M., "A Novel Shape Memory Polynorbornene Functionalized with Poly(3-caprolactone) Side Chain and Cyano Group Through Ring-Opening Metathesis Polymerization," Polymer, Vol. 51, 2010, pp. 5100-5106. https://doi.org/10.1016/j.polymer.2010.09.009
  12. Hu, Y., Lang, A.W., Li, X., and Nutt, S.R., "Hygrothermal Aging Effects on Fatigue of Glass Fiber/Polydicyclopentadiene Composites," Polymer Degradation and Stability, Vol. 110, 2014, pp. 464-472. https://doi.org/10.1016/j.polymdegradstab.2014.10.018