DOI QR코드

DOI QR Code

Growth of GaAs/AlGaAs structure for photoelectric cathode

광전음극 소자용 GaAs/AlGaAs 구조의 LPE 성장

  • Bae, Sung Geun (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jeon, Injun (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Kyoung Hwa (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
  • 배숭근 (한국해양대학교 전자소재공학과) ;
  • 전인준 (한국해양대학교 전자소재공학과) ;
  • 김경화 (한국해양대학교 전자소재공학과)
  • Received : 2017.11.02
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

In this paper, GaAs/AlGaAs multi-layer structure was grown by liquid phase epitaxy with graphite sliding boat, which can be used as a device structure of a photocathode image sensor. The multi-layer structure was grown on an n-type GaAs substrate in the sequence as follows: GaAs buffer layer, Zn-doped p-type AlGaAs layer as etching stop layer, Zn-doped p-type GaAs layer, and Zn-doped p-type AlGaAs layer. The Characteristics of GaAs/AlGaAs structures were analyzed by using scanning electron microscope (SEM), secondary ion mass spectrometer (SIMS) and hall measurement. The SEM images shows that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure was grown with a mirror-like surface on a whole ($1.25mm{\times}25mm$) substrate. The Al composition in the AlGaAs layer was approximately 80 %. Also, it was confirmed that the free carrier concentration in the p-GaAs layer can be adjusted to the range of $8{\times}10^{18}/cm^2$ by hall measurement. In the result, it is expected that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure grown by the LPE can be used as a device structure of a photoelectric cathode image sensor.

본 논문에서는 광전 음극 이미지 센서로 사용될 수 있는 광소자용 재료로 III-V 족 화합물 반도체인 GaAs/AlGaAs 다층 구조를 LPE(Liquid Phase Epitaxy) 방법에 의해 성장하였다. n형 GaAs 기판 위에 수십 nm의 GaAs 완충층을 형성 한 후 Zn가 도핑된 p-AlGaAs 에칭 정지 층(etching stop layer)과 Zn가 도핑된 p-GaAs 층 그리고 Zn가 도핑된 p-AlGaAs 층을 성장하였다. 성장된 시료의 특성을 조사하기 위하여 주사전자현미경(SEM)과 이차이온질량분석기(SIMS) 그리고 홀(Hall) 측정 장치 등을 이용하여 GaAs/AlGaAs 다층 구조를 분석하였다. 그 결과 $1.25mm{\times}25mm$의 성장 기판에서 거울면(mirror surface)을 가지는 p-AlGaAs/p-GaAs/p-AlGaAs 다층 구조를 확인할 수 있었으며, Al 조성은 80 %로 측정 되었다. 또한 p-GaAs층의 캐리어 농도는 $8{\times}10^{18}/cm^2$ 범위까지 조절할 수 있음을 확인하였다. 이 결과로부터 LPE 방법에 의해 성장된 p-AlGaAs/p-GaAs/AlGaAs 다층 구조는 광전 음극 이미지 센서의 소자로서 이용될 수 있을 것으로 기대한다.

Keywords

References

  1. Y. Xu, B. Chang, L. Chen, X. Chen and Y. Qian, "Comparison of GaAs photocathode grown by MOCVD and MBE: a first-principle and experimental research", J. Mater. Sci. - Mater. Electron. 28 (2017) 7429. https://doi.org/10.1007/s10854-017-6432-6
  2. Y.J. Zhang, J. Zhao, J.J. Zou, J. Niu, X.L. Chen and B.K. Chang, "The high quantum efficiency of exponential-doping AlGaAs/GaAs photocathodes grown by metalorganic chemical vapor deposition", Chinese Phys. Lett. 30 (2013) 044205. https://doi.org/10.1088/0256-307X/30/4/044205
  3. Y.J. Zhang, J. Zhao, J.J. Zou, J. Niu and B.K. Chang, "Negative electron affinity AlGaAs/GaAs photocathodes with exponential-doping structure", Adv. Mater. Res. 631 (2012) 160.
  4. X.P.V. Maldague, "Theory and practice of infrared technology for nondestructive testing", John Wiley & Sons, New York (2001) 684.
  5. X.P.V. Maldague, "Introduction to NDT by active infrared thermography", Materials Evaluation 18 (2002) 2.
  6. S.I. Long, J.M. Ballantyne and L.F. Eastman, "An analysis of GaAs LPE growth methods by a diffusion limited growth model", J. Cryst. Growth 32 (1976) 95. https://doi.org/10.1016/0022-0248(76)90015-4
  7. R.L. Moon and S.I. Long, "Dependence of GaAs LPE layer thickness on growth temperature", J. Cryst. Growth 32 (1976) 68. https://doi.org/10.1016/0022-0248(76)90010-5
  8. J.B. Shim, D.H. Yoon and M. Yoshizawa, "Improved single crystal growth methods for oxide materials by MBE, LPE and ${\mu}$-PD techniques", Journal of the Korean Crystal Growth and Crystal Technology 5 (1995) 378.
  9. J.B. Shim, W.N. Jeon and D.H. Yoon, "Growth and structural properties of ZnO co-doped $Er:LiNbO_3$ thin films by liquid phase epitaxy method", Journal of the Korean Crystal Growth and Crystal Technology 12 (2002) 27.
  10. S.W. Lee, H.Y. Cho, E.K. Kim, S.K. Min and J.H. Park, "Growth and characterization of GaAs and AlGaAs with MBE growth temperature", Journal of the Korean Crystal Growth and Crystal Technology 4 (1994) 11.
  11. S.J. Jeong and S.J. Kim, "Numerical study of the influence of inlet shape design of a horizontal MOCVD reactor on the characteristics of epitaxial layer growth", Journal of the Korean Crystal Growth and Crystal Technology 13 (2003) 247.
  12. D. Xiaojun, G. Xiaowan, Z. Jijun, Z. Yijun, P. Xincun, D. Wenjuan, C. Zhaoping, Z. Wenjun and C. Benkang, "Photoemission characteristics of graded band-gap AlGaAs/GaAs wire photocathode", Opt. Comm. 367 (2016) 149. https://doi.org/10.1016/j.optcom.2016.01.031
  13. J.J. Hsieh, "Thickness and surface morphology of GaAs LPE layers grown by super-cooling, step-cooling, equilibrium- cooling, and two-phase solution techniques", J. Cryst. Growth 27 (1974) 49. https://doi.org/10.1016/S0022-0248(74)80049-7
  14. D.C. Fu, M.S. Jusoh, A.F. Mat and B.Y. Majlis, "XRD characterization of the MBE grown Si : GaAs, GaAs, AlGaAs, and InGaAs epilayer", IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE 2002 (2002) 514.
  15. A. Roshko, K. Bertness, J. Armstrong, R. Marinenko, M. Salit, L. Robins, A. Paul and R. Matyi, "X-ray diffraction, photoluminescence and composition standards of compound semiconductors", Phys. Status Solidi C 3 (2003) 992.
  16. J.A. Taylor, "An XPS study of the oxidation of AlAs thin films grown by MBE", J. Vac. Sci. Technol. 20 (1982) 751. https://doi.org/10.1116/1.571450
  17. D.J. Carrad, A.M. Burke, P.J. Reece, R.W. Lyttleton, D.E.J. Waddington, A. Rai, D. Reuter, A.D. Wieck and A.P. Micolich, "The effect of $(NH_4)_2Sx$ passivation on the (311)AlGaAs surface and its use in AlGaAs/GaAs heterostructure devices", J. Phys.-Condens. Mat. 25 (2013) 335304.
  18. X. Guan, J. Becdeliever, A. Benali, C. Botella, G. Grenet, P. Regreny, N. Chauvin, N.P. Blanchard, X. Jaurand, G. Saint-Girons, R. Bachelet, M. Gendry and J. Penuelas, "GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell", Nanoscale 8 (2016) 15637.