DOI QR코드

DOI QR Code

Properties of Urchin-Structured Zinc Oxide Nanorods Gas Sensor by Using Polystyrene Sphere Array

Polystyrene 입자 정렬을 이용한 성게 구조 ZnO 나노막대 가스 센서의 특성

  • Kim, Jong-Woo (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Do Hoon (Department of Materials Science and Engineering, Yonsei University) ;
  • Ki, Tae Hoon (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Jung Hyuk (Department of Materials Science and Engineering, Yonsei University) ;
  • Myoung, Jae-Min (Department of Materials Science and Engineering, Yonsei University)
  • 김종우 (연세대학교 신소재공학과) ;
  • 김도훈 (연세대학교 신소재공학과) ;
  • 기태훈 (연세대학교 신소재공학과) ;
  • 박정혁 (연세대학교 신소재공학과) ;
  • 명재민 (연세대학교 신소재공학과)
  • Received : 2017.08.25
  • Accepted : 2017.11.01
  • Published : 2017.12.27

Abstract

Urchin-structured zinc oxide(ZnO) nanorod(NR) gas sensors were successfully demonstrated on a polyimide(PI) substrate, using single wall carbon nanotubes(SWCNTs) as the electrode. The ZnO NRs were grown with ZnO shells arranged at regular intervals to form a network structure with maximized surface area. The high surface area and numerous junctions of the NR network structure was the key to excellent gas sensing performance. Moreover, the SWCNTs formed a junction barrier with the ZnO which further improved sensor characteristics. The fabricated urchin-structured ZnO NR gas sensors exhibited superior performance upon $NO_2$ exposure with a stable response of 110, fast rise and decay times of 38 and 24 sec, respectively. Comparative analyses revealed that the high performance of the sensors was due to a combination of high surface area, numerous active junction points, and the use of the SWCNTs electrode. Furthermore, the urchin-structured ZnO NR gas sensors showed sustainable mechanical stability. Although degradation of the devices progressed during repeated flexibility tests, the sensors were still operational even after 10000 cycles of a bending test with a radius of curvature of 5 mm.

Keywords

References

  1. S. C. Anenberg, J. Miller, R. Minjares, L. Du, D. K. Henze, F. Lacey, C. S. Malley, L. Emberson, V. Franco, Z. Klimont and C. Heyes C., Nature, 545, 467 (2017). https://doi.org/10.1038/nature22086
  2. J. Kleinerman and D. Rynbrandt, Arch. Environ. Health, 31, 37 (1976). https://doi.org/10.1080/00039896.1976.10667187
  3. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors, 10, 2088 (2010). https://doi.org/10.3390/s100302088
  4. S. D. Baek, P. Biswas, J. W. Kim, Y. C. Kim, T. I. Lee and J. M. Myoung, ACS Appl. Mater. Interfaces, 8, 13018 (2016). https://doi.org/10.1021/acsami.6b03258
  5. C. C. Hsiao and L. S. Luo, Sensors, 14, 12219 (2014). https://doi.org/10.3390/s140712219
  6. D. Gu, H. Baumgart, F. Naumann and M. Petzold, ECS Trans., 33, 529 (2010).
  7. H. Xu, X. Liu, D. Cui, M. Li and M. A. Jiang, Sens. Actuators, B, 114, 301 (2006). https://doi.org/10.1016/j.snb.2005.05.020
  8. I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, V. Duppel, I. Tiginyanu, L. Kienle and R. Adelung, Adv. Electron. Mater., 1, 1 (2015).
  9. Z. G. Zhou, Z. L. Tang and Z. T. Zhang, Sens. Actuators, B, 93, 356 (2003). https://doi.org/10.1016/S0925-4005(03)00216-8
  10. P. Feng, Q. Wan and T. H. Wang, Appl. Phys. Lett., 87, 213111 (2005). https://doi.org/10.1063/1.2135391
  11. R. Kumar, O. Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 7, 97 (2015). https://doi.org/10.1007/s40820-014-0023-3
  12. O. Lupan, L. Chow, T. Pauporte, L. K. Ono, B. R. Cuenya and G. Chai, Sens. Actuators, B, 173, 772 (2012). https://doi.org/10.1016/j.snb.2012.07.111
  13. S. Peng and K. Cho, Nanotechnology, 11, 57 (2000). https://doi.org/10.1088/0957-4484/11/2/303
  14. D. K. Kwon, S. J. Lee and J. M. Myoung, Nanoscale, 8, 16677 (2016). https://doi.org/10.1039/C6NR05256H
  15. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003). https://doi.org/10.1063/1.1632537
  16. Y. C. Kim, S. J. Lee, I. K. Oh, S. Seo, H. Kim and J. M. Myoung, J. Alloy. Compd., 688, 1108 (2016). https://doi.org/10.1016/j.jallcom.2016.07.169