DOI QR코드

DOI QR Code

Electrical Resistivity of Natural Graphite-Fluorine Resin Composite for Bipolar Plates of Phosphoric Acid Fuel Cell(PAFC) Depending on Graphite Particle Size

인산형 연료전지 분리판용 천연흑연-불소수지계 복합재료의 흑연입도에 따른 전기비저항 변화

  • Lee, Sang-Min (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Beak, Un-Gyeong (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Tae-Jin (Gyeongbuk Institute For Regional Program Evaluation) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 이상민 (금오공과대학교 신소재공학과) ;
  • 백운경 (금오공과대학교 신소재공학과) ;
  • 김태진 (경북지역사업평가단) ;
  • 노재승 (금오공과대학교 신소재공학과)
  • Received : 2017.08.28
  • Accepted : 2017.11.06
  • Published : 2017.12.27

Abstract

A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and $37.7{\mu}m$. The density of the composite increased from 2.25 to $2.72g/cm^3$ as the graphite size increased from 37.7 to $610.3{\mu}m$. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were $1.99{\times}10^{-3}{\Omega}cm$ and 2.02 %, respectively, when the graphite size was $401.6{\mu}m$. The flexural strength of the composite was 10.3MPa when the graphite size was $401.6{\mu}m$. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.

Keywords

References

  1. E. R, Gonzalez and S. Snrivasan, J. Hydrogen Energy, 9, 215 (1984). https://doi.org/10.1016/0360-3199(84)90121-6
  2. Y. W. Kim and J. S. LEE, J. Korean Ind. Eng. Chem., 3, 567 (1992).
  3. J. Y. Lee, W. K. Lee, H. G. Rim, G. B. Joung, H. K. Lee, Trans. Korean Hydrogen New Energy Soc., 25, 131 (2014). https://doi.org/10.7316/KHNES.2014.25.2.131
  4. V. Mehta and J. S. Cooper, J. Power Sources, 114, 32 (2003). https://doi.org/10.1016/S0378-7753(02)00542-6
  5. S. I. Heo, J. C. Yun, C. K. Jung and K. S. Han, Proceeding of the KSCM Spring Annual Meeting, 147 (2004).
  6. H. C. Kuan, C. C. M. Ma, K. H. Chen and S. M. Chen, J. Power Sources, 134, 7 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.024
  7. H. M. Kang, I. S. Han and C. Lim, J. Korean Soc. New and Renewable Energy, 3(4), 3 (2007).
  8. K. M. Kang, S. H. Park, J. S. Kim, H. J. Ji and H. C. Ju, Trans. Korean Hydrogen and New Energy Soc., 23, 134 (2012). https://doi.org/10.7316/KHNES.2012.23.2.134
  9. B. Dhungana and Y. G. Son, J. Korea Academia-Industrial Cooper. Soc., 16, 3627 (2015). https://doi.org/10.5762/KAIS.2015.16.5.3627
  10. J. Lee, Y. Jang, C. Hong, N. Kim, P. Li and H. Lee, J. Power Source, 193, 523 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.029
  11. K. Y. Cho, K. J. Kim and D. H. Riu, Carbon Lett., 7, 271 (2006).
  12. A. Cao, C. Xu, J. Liang, D. Wu and B. Wei, Chem. Phys. Lett., 344, 13 (2001). https://doi.org/10.1016/S0009-2614(01)00671-6
  13. J. S. Roh, Carbon Lett., 5, 27 (2004).
  14. M. S. Seehra, A. S. Pavlovic, V. S. Babu, J. W. Zondlo, P. G. Stanberry and A. H. Stiller, Carbon, 32, 431 (1994). https://doi.org/10.1016/0008-6223(94)90163-5
  15. T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith and N. T. Skipper, Nature Phys., 1, 39 (2005). https://doi.org/10.1038/nphys0010
  16. G. A. Slack, Phys. Review, 127, 694 (1962). https://doi.org/10.1103/PhysRev.127.694
  17. S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh, Carbon Lett., 15, 142 (2014). https://doi.org/10.5714/CL.2014.15.2.142
  18. P. H. Maheshwari, R. B. Mathur and T. L. Dhami, J. Power Sources, 173, 394 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.049
  19. D. Y. Han, E. S. Kim, S. H. Chi and Y. S. Lim, J. Korean Ceram. Soc., 43, 439 (2006). https://doi.org/10.4191/KCERS.2006.43.7.439
  20. S. I. Heo, J. C. Yun, K. S. Oh and K. S. Han, Adv. Composite Mater., 15, 115 (2006). https://doi.org/10.1163/156855106776829356
  21. S. R. Dhakate, R. B. Mathur, S. Sharma, M. Borah and T. L. Dhami, Energy Fuels, 23, 934 (2009). https://doi.org/10.1021/ef800744m
  22. H. C. Kuan, C. C. M. Ma, K. H. Chen and S. M. Chen, J. Power Sources, 134, 7 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.024