DOI QR코드

DOI QR Code

Attention and Working Memory Task-Load Dependent Activation Increase with Deactivation Decrease after Caffeine Ingestion

  • Peng, Wei (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Zhang, Jian (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Chang, Da (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Shen, Zhuo-Wen (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Shang, Yuanqi (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Song, Donghui (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Ge, Qiu (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Weng, Xuchu (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University) ;
  • Wang, Ze (Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University)
  • Received : 2017.06.09
  • Accepted : 2017.09.20
  • Published : 2017.12.30

Abstract

Purpose: Caffeine is the most widely consumed psychostimulant. It is often adopted as a tool to modulate brain activations in fMRI studies. However, its pharmaceutical effect on task-induced deactivation has not been fully examined in fMRI. Therefore, the purpose of this study was to examine the effect of caffeine on both activation and deactivation under sustained attention. Materials and Methods: Task fMRI was acquired from 26 caffeine naive healthy volunteers before and after taking caffeine pill (200 mg). Results: Statistical analysis showed an increase in cognition-load dependent task activation but a decrease in load dependent de-activation after caffeine ingestion. Increase of attention and memory task activation and its load-dependence suggest a beneficial effect of caffeine on the brain even though it has no overt behavior improvement. The reduction of deactivation by caffeine and its load-dependence indicate reduced facilitation from task-negative networks. Conclusion: Caffeine affects brain activity in a load-dependent manner accompanied by a disassociation between task-positive network and task-negative network.

Keywords

References

  1. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999;51:83-133
  2. Frary CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 2005;105:110-113
  3. Ferre S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 2008;105:1067-1079 https://doi.org/10.1111/j.1471-4159.2007.05196.x
  4. Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol 2002;40:1231-1234 https://doi.org/10.1016/S0278-6915(02)00093-5
  5. Axelrod J, Reichenthal J. The fate of caffeine in man and a method for its estimation in biological material. J Pharmacol Exp Ther 1953;107:519-523
  6. Smith A. Effects of caffeine on human behavior. Food Chem Toxicol 2002;40:1243-1255 https://doi.org/10.1016/S0278-6915(02)00096-0
  7. Lieberman HR. Caffeine in factors affecting human performance. The physical environment, Vol. 2. London: Academic Press, 1992
  8. Smith A, Sutherland D, Christopher G. Effects of repeated doses of caffeine on mood and performance of alert and fatigued volunteers. J Psychopharmacol 2005;19:620-626 https://doi.org/10.1177/0269881105056534
  9. Adan A, Prat G, Fabbri M, Sanchez-Turet M. Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1698-1703 https://doi.org/10.1016/j.pnpbp.2008.07.005
  10. Koppelstaetter F, Poeppel TD, Siedentopf CM, et al. Caffeine and cognition in functional magnetic resonance imaging. J Alzheimers Dis 2010;20 Suppl 1:S71-84 https://doi.org/10.3233/JAD-2010-1417
  11. Einother SJ, Giesbrecht T. Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl) 2013;225:251-274 https://doi.org/10.1007/s00213-012-2917-4
  12. Addicott MA, Yang LL, Peiffer AM, et al. The effect of daily caffeine use on cerebral blood flow: how much caffeine can we tolerate? Hum Brain Mapp 2009;30:3102-3114 https://doi.org/10.1002/hbm.20732
  13. Bendlin BB, Trouard TP, Ryan L. Caffeine attenuates practice effects in word stem completion as measured by fMRI BOLD signal. Hum Brain Mapp 2007;28:654-662 https://doi.org/10.1002/hbm.20295
  14. Chen Y, Parrish TB. Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage 2009;46:577-583 https://doi.org/10.1016/j.neuroimage.2009.03.012
  15. Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM. Relationship between caffeine-induced changes in resting cerebral perfusion and blood oxygenation leveldependent signal. AJNR Am J Neuroradiol 2003;24:1607-1611
  16. Liau J, Perthen JE, Liu TT. Caffeine reduces the activation extent and contrast-to-noise ratio of the functional cerebral blood flow response but not the BOLD response. Neuroimage 2008;42:296-305 https://doi.org/10.1016/j.neuroimage.2008.04.177
  17. Liu TT, Behzadi Y, Restom K, et al. Caffeine alters the temporal dynamics of the visual BOLD response. Neuroimage 2004;23:1402-1413 https://doi.org/10.1016/j.neuroimage.2004.07.061
  18. Mulderink TA, Gitelman DR, Mesulam MM, Parrish TB. On the use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage 2002;15:37-44 https://doi.org/10.1006/nimg.2001.0973
  19. Perthen JE, Lansing AE, Liau J, Liu TT, Buxton RB. Caffeineinduced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study. Neuroimage 2008;40:237-247 https://doi.org/10.1016/j.neuroimage.2007.10.049
  20. Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997;9:648-663 https://doi.org/10.1162/jocn.1997.9.5.648
  21. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38 https://doi.org/10.1196/annals.1440.011
  22. Binder JR. Task-induced deactivation and the "resting" state. Neuroimage 2012;62:1086-1091 https://doi.org/10.1016/j.neuroimage.2011.09.026
  23. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682 https://doi.org/10.1073/pnas.98.2.676
  24. Greicius MD, Srivastava G, Reiss AL, Menon V. Defaultmode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642 https://doi.org/10.1073/pnas.0308627101
  25. Brice C, Smith A. The effects of caffeine on simulated driving, subjective alertness and sustained attention. Hum Psychopharmacol 2001;16:523-531 https://doi.org/10.1002/hup.327
  26. Brunye TT, Mahoney CR, Lieberman HR, Taylor HA. Caffeine modulates attention network function. Brain Cogn 2010;72:181-188 https://doi.org/10.1016/j.bandc.2009.07.013
  27. Lieberman HR, Wurtman RJ, Emde GG, Roberts C, Coviella IL. The effects of low doses of caffeine on human performance and mood. Psychopharmacology (Berl) 1987;92:308-312 https://doi.org/10.1007/BF00210835
  28. Roache JD, Griffiths RR. Interactions of diazepam and caffeine: behavioral and subjective dose effects in humans. Pharmacol Biochem Behav 1987;26:801-812 https://doi.org/10.1016/0091-3057(87)90614-9
  29. Koppelstaetter F, Poeppel TD, Siedentopf CM, et al. Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage 2008;39:492-499 https://doi.org/10.1016/j.neuroimage.2007.08.037
  30. Serra-Grabulosa JM, Adan A, Falcon C, Bargallo N. Glucose and caffeine effects on sustained attention: an exploratory fMRI study. Hum Psychopharmacol 2010;25:543-552
  31. Bakan P. Extraversion-introversion and improvement in an auditory vigilance task. Br J Psychol 1959;50:325-332 https://doi.org/10.1111/j.2044-8295.1959.tb00711.x
  32. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59 Suppl 20:22-33;quiz 34-57
  33. Wesnes K, Warburton DM. Effects of smoking on rapid information processing performance. Neuropsychobiology 1983;9:223-229 https://doi.org/10.1159/000117969
  34. Elorza A, Roschzttardtz H, Gomez I, et al. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination. Plant Cell Physiol 2006;47:14-21 https://doi.org/10.1093/pcp/pci218
  35. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289 https://doi.org/10.1006/nimg.2001.0978
  36. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678 https://doi.org/10.1073/pnas.0504136102
  37. Haatveit B, Jensen J, Alnaes D, et al. Reduced loaddependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders. Neuroimage Clin 2016;12:389-396 https://doi.org/10.1016/j.nicl.2016.08.012
  38. Metzak PD, Riley JD, Wang L, Whitman JC, Ngan ET, Woodward TS. Decreased efficiency of task-positive and task-negative networks during working memory in schizophrenia. Schizophr Bull 2012;38:803-813 https://doi.org/10.1093/schbul/sbq154
  39. Wong CW, Olafsson V, Tal O, Liu TT. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. Neuroimage 2012;63:356-364 https://doi.org/10.1016/j.neuroimage.2012.06.035
  40. Klaassen EB, de Groot RH, Evers EA, et al. The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology 2013;64:160-167 https://doi.org/10.1016/j.neuropharm.2012.06.026
  41. Ruijter J, Lorist MM, Snel J, De Ruiter MB. The influence of caffeine on sustained attention: an ERP study. Pharmacol Biochem Behav 2000;66:29-37 https://doi.org/10.1016/S0091-3057(00)00229-X
  42. Haller S, Rodriguez C, Moser D, et al. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study. Neuroscience 2013;250:364-371 https://doi.org/10.1016/j.neuroscience.2013.07.021
  43. Childs E, de Wit H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl) 2006;185:514-523 https://doi.org/10.1007/s00213-006-0341-3
  44. Brunye TT, Mahoney CR, Lieberman HR, Giles GE, Taylor HA. Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain Cogn 2010;74:186-192 https://doi.org/10.1016/j.bandc.2010.07.006
  45. Keane MA, James JE. Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted. Hum Psychopharmacol 2008;23:669-680 https://doi.org/10.1002/hup.987