DOI QR코드

DOI QR Code

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas (Department of Radiological Sciences, University of California Los Angeles) ;
  • Wang, Yi (Philips, MR Clinical Science NA) ;
  • Rashid, Shams (Department of Radiological Sciences, University of California Los Angeles) ;
  • Shao, Xingfeng (Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California) ;
  • Moeller, Steen (Center of Magnetic Resonance Research, University of Minnesota) ;
  • Hu, Peng (Department of Radiological Sciences, University of California Los Angeles) ;
  • Sung, Kyunghyun (Department of Radiological Sciences, University of California Los Angeles) ;
  • Wang, Danny JJ (Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California)
  • Received : 2017.07.03
  • Accepted : 2017.09.09
  • Published : 2017.12.30

Abstract

Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

Keywords

References

  1. Miller KL, Tijssen RH, Stikov N, Okell TW. Steady-state MRI: methods for neuroimaging. Imaging Med 2011;3:93-105 https://doi.org/10.2217/iim.10.66
  2. Carr H. Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958;112:1693-1701 https://doi.org/10.1103/PhysRev.112.1693
  3. Bieri O, Scheffler K. Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 2013;38:2-11 https://doi.org/10.1002/jmri.24163
  4. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-2418 https://doi.org/10.1007/s00330-003-1957-x
  5. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP: a new fast MRI sequence. Electromedica 1986;54:15-18
  6. Duerk JL, Lewin JS, Wendt M, Petersilge C. Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at .2 T. J Magn Reson Imaging 1998;8:203-208 https://doi.org/10.1002/jmri.1880080134
  7. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  8. Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 2008;60:895-907 https://doi.org/10.1002/mrm.21728
  9. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317 https://doi.org/10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
  10. Setsompop K, Cohen-Adad J, Gagoski BA, et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569-580 https://doi.org/10.1016/j.neuroimage.2012.06.033
  11. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684-691 https://doi.org/10.1002/mrm.20401
  12. Stab D, Ritter CO, Breuer FA, Weng AM, Hahn D, Kostler H. CAIPIRINHA accelerated SSFP imaging. Magn Reson Med 2011;65:157-164 https://doi.org/10.1002/mrm.22600
  13. Haacke EM, Wielopolski PA, Tkach JA, Modic MT. Steadystate free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiology 1990;175:545-552 https://doi.org/10.1148/radiology.175.2.2326480
  14. Hargreaves BA. Rapid gradient-echo imaging. J Magn Reson Imaging 2012;36:1300-1313 https://doi.org/10.1002/jmri.23742
  15. Khajehim M, Nasiraei-Moghaddam A, Hossein-Zadeh GA, Martin T, Wang D. A quantitative analysis of fMRI induced phase changes using averaged-BOSS (A-BOSS). In Proceedings of the 23rd Scientific Meeting of International Society for Magnetic Resonance in Medicine. Toronto, 2015:3921
  16. Shams Z, Moghaddam AN. Averaged-BOSS: feasibility study and preliminary results. In Proceedings of the 22nd Scientific Meeting of International Society for Magnetic Resonance in Medicine. Milan, 2014:4216
  17. Zur Y, Wood ML, Neuringer LJ. Spoiling of transverse magnetization in steady-state sequences. Magn Reson Med 1991;21:251-263 https://doi.org/10.1002/mrm.1910210210
  18. Crawley AP, Wood ML, Henkelman RM. Elimination of transverse coherences in FLASH MRI. Magn Reson Med 1988;8:248-260 https://doi.org/10.1002/mrm.1910080303
  19. Sekihara K. Steady-state magnetizations in rapid NMR imaging using small flip angles and short repetition intervals. IEEE Trans Med Imaging 1987;6:157-164 https://doi.org/10.1109/TMI.1987.4307816
  20. Scheffler IE, Elson EL, Baldwin RL. Helix formation by dAT oligomers. I. Hairpin and straight-chain helices. J Mol Biol 1968;36:291-304 https://doi.org/10.1016/0022-2836(68)90156-3
  21. Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556 https://doi.org/10.1002/mrm.20787
  22. Haacke EM, Lenz GW. Improving MR image quality in the presence of motion by using rephasing gradients. AJR Am J Roentgenol 1987;148:1251-1258 https://doi.org/10.2214/ajr.148.6.1251
  23. Axel L, Morton D. MR flow imaging by velocitycompensated/uncompensated difference images. J Comput Assist Tomogr 1987;11:31-34
  24. Simonetti OP, Wendt RE 3rd, Duerk JL. Significance of the point of expansion in interpretation of gradient moments and motion sensitivity. J Magn Reson Imaging 1991;1:569-577 https://doi.org/10.1002/jmri.1880010510
  25. Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes - pure and simple. J Magn Reson Imaging 2015;41:266-295 https://doi.org/10.1002/jmri.24619
  26. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999;9:531-538 https://doi.org/10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
  27. Wang Y, Moeller S, Li X, et al. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. Neuroimage 2015;113:279-288 https://doi.org/10.1016/j.neuroimage.2015.03.060
  28. Xiang QS, Hoff MN. Banding artifact removal for bSSFP imaging with an elliptical signal model. Magn Reson Med 2014;71:927-933 https://doi.org/10.1002/mrm.25098
  29. Mikaiel S, Martin T, Sung K, Wu H. Real-time golden angle radial iSSFP for interventional MRI. In Proceedings of the 24th Scientific Meeting of International Society for Magnetic Resonance in Medicine. Singapore, 2016:3579
  30. Sun K, Xue R, Zhang P, et al. Integrated SSFP for functional brain mapping at 7T with reduced susceptibility artifact. J Magn Reson 2017;276:22-30 https://doi.org/10.1016/j.jmr.2016.12.012
  31. Kim MO, Hong T, Kim DH. Multislice CAIPIRINHA using view angle tilting technique (CAIPIVAT). Tomography 2016;2:43-48 https://doi.org/10.18383/j.tom.2016.00109
  32. Kim D, Seo H, Oh C, Han Y, Park H. Multi-slice imAGe generation using intra-slice paraLLel imaging and Inter-slice shifting (MAGGULLI). Phys Med Biol 2016;61:1692-1704 https://doi.org/10.1088/0031-9155/61/4/1692
  33. Bilgic B, Gagoski BA, Cauley SF, et al. Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 2015;73:2152-2162 https://doi.org/10.1002/mrm.25347
  34. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224 https://doi.org/10.1002/mrm.23097
  35. Bieri O, Scheffler K. Flow compensation in balanced SSFP sequences. Magn Reson Med 2005;54:901-907 https://doi.org/10.1002/mrm.20619
  36. Wang Y, Shao X, Martin T, Moeller S, Yacoub E, Wang DJ. Phase-cycled simultaneous multislice balanced SSFP imaging with CAIPIRINHA for efficient banding reduction. Magn Reson Med 2016;76:1764-1774 https://doi.org/10.1002/mrm.26076
  37. Gagoski BA, Bilgic B, Eichner C, et al. RARE/turbo spin echo imaging with simultaneous multislice wave-CAIPI. Magn Reson Med 2015;73:929-938 https://doi.org/10.1002/mrm.25615