DOI QR코드

DOI QR Code

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City

하늘시계지수 비교 및 도시기온 상관성 연구: 강남 선정릉지역을 중심으로

  • Yi, Chaeyeon (Weather Information Service Engine Institute, Hankuk University of Foreign Studies) ;
  • Shin, Yire (Weather Information Service Engine Institute, Hankuk University of Foreign Studies) ;
  • An, Seung Man (Korea Research Institute for Human Settlements)
  • 이채연 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 신이레 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 안승만 (국토연구원 주택.토지연구본부)
  • Received : 2017.10.24
  • Accepted : 2017.12.15
  • Published : 2017.12.31

Abstract

Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.

Keywords

References

  1. Akbari, H., 2002: Shade trees reduce building energy use and $CO_2$ emissions from power plants. Environ. Pollut., 116, S119-S126. https://doi.org/10.1016/S0269-7491(01)00264-0
  2. Ali-Toudert, F., and H. Mayer, 2007: Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy, 81, 742-754. https://doi.org/10.1016/j.solener.2006.10.007
  3. An, S. M., B. S. Kim, H. Y. Lee, C. H. Kim, C. Y. Yi, J. H. Eum, and J. H. Woo, 2014: Three-dimensional point cloud based sky view factor analysis in complex urban settings. Int. J. Climatol., 34, 2685-2701, doi:10.1002/joc.3868.
  4. An, S. M., H.-G. Son, K.-S. Lee, and C. Yi, 2016: A Study of the urban tree canopy mean radiant temperature mitigation estimation. J. Korean Inst. Landsc. Archit., 44, 93-106, doi:10.9715/KILA.2016.44.1.093 (in Korean with English abstract).
  5. Anderson, M. C., 1964: Studies of the woodland light climate: I. The photographic computation of light conditions. J. Ecology, 52, 27-41. https://doi.org/10.2307/2257780
  6. Bruse, M., and H. Fleer, 1998: Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ. Model Softw., 13, 373-384. https://doi.org/10.1016/S1364-8152(98)00042-5
  7. Casares, F. J., J. Ramirez-Faz, and R. Lopez-Luque, 2014: Development of synthetic hemispheric projections suitable for assessing the sky view factor on horizontal planes. Energy Build., 82, 696-702, doi:10.1016/j.enbuild.2014.06.057.
  8. Chapman, L., and J. E. Thornes, 2004: Real-time sky-view factor calculation and approximation. J. Atmos. Ocean. Technol., 21, 730-741. https://doi.org/10.1175/1520-0426(2004)021<0730:RSFCAA>2.0.CO;2
  9. Chen, L., E. Ng, X. An, C. Ren, M. Lee, U. Wang, and Z. He, 2012: Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol., 32, 121-136, doi:10.1002/joc.2243.
  10. Eum, J.-H., D. Scherer, U. Fehrenbach, J. Koppel, and J.-H. Woo, 2013: Integrating urban climate into urban master plans using spatially distributed information-The Seoul example. Land Use Policy, 34, 223-232, doi:10.1016/j.landusepol.2013.03.016.
  11. Gal, T., F. Lindberg, and J. Unger, 2009: Computing continuous sky view factors using 3D urban raster and vector databases: Comparison and application to urban climate. Theor. Appl. Climatol., 95, 111-123. https://doi.org/10.1007/s00704-007-0362-9
  12. Grimmond, C. S. B., S. K. Potter, H. N. Zutter, and C. Souch, 2001: Rapid methods to estimate sky-view factors applied to urban areas. Int. J. Climatol., 21, 903-913. https://doi.org/10.1002/joc.659
  13. Hart, M. A., and D. J. Sailor, 2009: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol., 95, 397-406. https://doi.org/10.1007/s00704-008-0017-5
  14. Holmer, B., 1992: A simple operative method for determination of sky view factors in complex urban canyons from fisheye photographs. Meteorol. Zeitschrift, 1, 236-239.
  15. Holmer, B., U. Postgard, and M. Eriksson, 2001: Sky view factors in forest canopies calculated with IDRISI. Theor. Appl. Climatol., 68, 33-40. https://doi.org/10.1007/s007040170051
  16. Hammerle, M., T. Gal, J. Unger, and A. Matzarakis, 2011: Comparison of models calculating the sky view factor used for urban climate investigations. Theor. Appl. Climatol., 105, 521-527, doi:10.1007/s00704-011-0402-3.
  17. Janicke, B., F. Meier, F. Lindberg, S. Schubert, and D. Scherer, 2016: Towards city-wide, building-resolving analysis of mean radiant temperature. Urban Clim., 15, 83-98, doi:10.1016/j.uclim.2015.11.003.
  18. Kastendeuch, P. P., 2013: A method to estimate sky view factors from digital elevation models. Int. J. Climatol., 33, 1574-1578, doi:10.1002/joc.3523.
  19. Kim, K. R., C. Yi, J.-S. Lee, F. Meier, B. Janicke, U. Fehrenbach, and D. Scherer, 2014: BioCAS: Biometeorological climate impact assessment system for buildingscale impact assessment of heat-stress related mortality. DIE ERDE, 145, 62-79, doi:10.12854/erde-145-6.
  20. Kokalj, Z., K. Zaksek, and K. Ostir, 2011: Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models. Antiquity, 85, 263-273, doi:10.1017/S0003598X00067594.
  21. Kong, F., W. Yan, G. Zheng, H. Yin, G. Cavan, W. Zhan, N. Zhang, and L. Cheng, 2016: Retrieval of threedimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. Forest Meteor., 217, 22-34, doi:10.1016/j.agrformet.2015.11.005.
  22. Lindberg, F., B. Holmer, and S. Thorsson, 2008: SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol., 52, 697-713. https://doi.org/10.1007/s00484-008-0162-7
  23. Lindberg, F., and C. S. B. Grimmond, 2011: The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol., 105, 311-323, doi:10.1007/s00704-010-0382-8.
  24. Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments:Links with surface seasonal properties. J. Appl. Meteor. Climatol., 51, 219-241, doi:10.1175/JAMC-D-11-038.1.
  25. Matuschek, O., and A. Matzarakis, 2010: Estimation of sky view factor in complex environment as a tool for applied climatological studies. In Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universitat Freiburg, Nr. 20, A. Matzarakis Eds., 534-539.
  26. Matzarakis, A., and O. Matuschek, 2011: Sky view factor as a parameter in applied climatology - rapid estimation by the SkyHelios model. Meteorol. Zeitschrift, 20, 39-45, doi:10.1127/0941-2948/2011/0499.
  27. Matzarakis, A., F. Rutz, and H. Mayer, 2007: Modeling radiation fluxes in simple and complex environments-application of the RayMan model. Int. J. Biometeorol., 51, 323-334. https://doi.org/10.1007/s00484-006-0061-8
  28. Murphy, D. J., M. H. Hall, C. A. S. Hall, G. M. Heisler, S. V. Stehman, and C. Anselmi-Molina, 2011: The relationship between land cover and the urban heat island in northeastern Puerto Rico. Int. J. Climatol., 31, 1222-1239, doi:10.1002/joc.2145.
  29. Oke, T. R., 1981: Canyon geometry and the nocturnal heat island: comparison of scale model and field observations. Int. J. Climatol., 1, 237-254. https://doi.org/10.1002/joc.3370010304
  30. Oke, T. R., 1987: Boundary Layer Climates. 2nd. Methuen, 289 pp.
  31. Pigeon, G., D. Legain, P. Durand, and V. Masson, 2007: Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int. J. Climatol., 27, 1969-1981. https://doi.org/10.1002/joc.1530
  32. Robitu, M., M. Musy, C. Inard, and D. Groleau, 2006: Modeling the influence of vegetation and water pond on urban microclimate. Sol. Energy, 80, 435-447. https://doi.org/10.1016/j.solener.2005.06.015
  33. Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189-199, doi:10.1002/joc.2106.
  34. Shaker, R. R., and T. D. Drezner, 2010: A new technique for predicting the sky view factor for urban heat island assessment. Geogr. Bull., 51, 85-96.
  35. Souza, L. C. L., D. S. Rodrigues, and J. F. G. Mendes, 2003: Sky view factors estimation using a 3D-GIS extension. Proc. 8th Int. Conference on IBPSA, Eindhoven, 1227-1234.
  36. Stathopoulou, M., and C. Cartalis, 2007: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy, 81, 358-368. https://doi.org/10.1016/j.solener.2006.06.014
  37. Steyn, D. G., 1980: The calculation of view factors from fisheye-lens photographs: Research note. Atmosphere-Ocean, 18, 254-258. https://doi.org/10.1080/07055900.1980.9649091
  38. Unger, J., 2009: Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int. J. Environ. Pollut., 36, 59-80. https://doi.org/10.1504/IJEP.2009.021817
  39. Yamashita, S., K. Sekine, M. Shoda, K. Yamashita, and Y. Hara, 1986: On the relationships between heat island and sky view factor in the cities of Tama River Basin, Japan. Atmos. Environ., 20, 681-686. https://doi.org/10.1016/0004-6981(86)90182-4
  40. Yang, F., S. S. Y. Lau, and F. Qian, 2010: Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Build. Environ., 45, 115-134, doi:10.1016/j.buildenv.2009.05.010.
  41. Yi, C., K.-R. Kim, Y.-J. Choi, H. Y. Won, and S. Dieter, 2012: Nocturnal surface cooling and cold air transport analysis based on high density Observation - A case study of Eunpyeong New Town in Seoul. J. Korean Assoc. Geogr. Inf. Stud., 15, 124-137, doi:10.11108/kagis.2012.15.4.124 (in Korean with English abstract).
  42. Yi, C., K.-R. Kim, S.-M. An, and Y.-J. Choi, 2014: Impact of the local surface characteristics and the distance from the center of heat island to suburban areas on the night temperature distribution over the Seoul metropolitan area. J. Korean Assoc. Geogr. Inf. Stud., 17, 35-49, doi:10.11108/kagis.2014.17.1.035 (in Korean with English abstract).
  43. Yi, C., S. M. An, K. R. Kim, H.-G. Kwon, and J.-S. Min, 2016: Surface micro-climate analysis based on urban morphological characteristics: temperature deviation estimation and evaluation. Atmosphere, 26, 445-459, doi:10.14191/Atmos.2016.26.3.445 (in Korean with Ehglish abstract).