DOI QR코드

DOI QR Code

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy

우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점

  • Kim, Jiyoung (National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Jang, Kun-Il (National Meteorological Satellite Center, Korea Meteorological Administration)
  • 김지영 (기상청 국가기상위성센터) ;
  • 장근일 (기상청 국가기상위성센터)
  • Received : 2017.08.18
  • Accepted : 2017.10.16
  • Published : 2017.12.31

Abstract

Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

Keywords

References

  1. Ackermann, M., and Coauthors, 2013: Detection of the characteristic pion-decay signature in supernova remnants. Science, 339, 807-811, doi:10.1126/science.1231160.
  2. Agee, E. M., K. Kiefer, and E. Cornett, 2012: Relationship of lower-troposphere cloud cover and cosmic rays: An updated perspective. J. Climate, 25, 1057-1060, doi:10.1175/JCLI-D-11-00169.1.
  3. Brooks, C. E. P., 1934: The variation of the annual frequency of thunderstorms in relation to sunspots. Quart. J. Roy. Meteor. Soc., 60, 153-166.
  4. Carslaw, K. S., R. G. Harrison, and J. Kirkby, 2002: Cosmic rays, clouds, and climate. Science, 298, 1732-1737. https://doi.org/10.1126/science.1076964
  5. Cho, I.-H., Y.-S. Kwak, H.-Y. Chang, K.-S. Cho, Y.-H. Kim, and Y.-D. Park, 2012a: The global temperature anomaly and solar north-south asymmetry. Asia-Pac. J. Atmos. Sci., 48, 253-257, doi:10.1007/s13143-012-0025-3.
  6. Cho, I.-H., Y.-S. Kwak, K. Marubashi, Y.-H. Kim, Y.-D. Park, and H.-Y. Chang, 2012b: Changes in see-level pressure over South-Korea associated with high-speed solar wind events. Adv. Space Res., 50, 777-782, doi:10.1016/j.asr.2011.06.025.
  7. Choi, H.-S., and Coauthors, 2011: Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9, S06001, doi:10.1029/2010SW000597.
  8. Chronis, T. G., 2009: Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States. J. Climate, 22, 5748-5754. https://doi.org/10.1175/2009JCLI2912.1
  9. CLOUD Collaboration, 2000: A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS. CERN/SPSC-2000?021, SPSC/P317, 107 pp. [Available online at http://cloud.web.cern.ch/cloud.].
  10. Crutzen, P. J., I. S. A. Isaksen, and G. C. Reid, 1975: Solar proton events: Stratospheric sources of nitric oxide. Science, 189, 457-459. https://doi.org/10.1126/science.189.4201.457
  11. Dickinson, R. E., 1975: Solar variability and the lower atmosphere. Bull. Amer. Meteor. Soc., 56, 1240-1248. https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2
  12. Dunne, E. M., and Coauthors, 2016: Global atmospheric particle formation from CERN CLOUD measurements. Science, 354, 1119-1124, doi:10.1126/science.aaf2649.
  13. Duplissy, J., and Coauthors, 2016: Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory. J. Geophys. Res., 121, 1752-1775, doi:10.1002/2015JD023539.
  14. Egorova, L. V., V. Y. Vovk, and O. A. Troshichev, 2000: Influence of variations of the cosmic rays on atmospheric pressure and temperature in the Southern geomagnetic pole region. J. Atmos. Sol.-Terr. Phy., 62, 955-966. https://doi.org/10.1016/S1364-6826(00)00080-8
  15. Enghoff, M. B., J. O. P. Pedersen, U. I. Uggerhoj, S. M. Paling, and H. Svensmark, 2011: Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett., 38, L09805, doi:10.1029/2011GL047036.
  16. Forbush, S. E., 1954: World-wide cosmic-ray variations, 1937-1952. J. Geophys. Res., 59, 525-542. https://doi.org/10.1029/JZ059i004p00525
  17. Friis-Christensen, E., and K. Lassen, 1991: Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 254, 698-700. https://doi.org/10.1126/science.254.5032.698
  18. Gordon, H., and Coauthors, 2016: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Natl. Acad. Sci., 113, 12053-12058, doi:10.1073/pnas.1602360113.
  19. Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.
  20. Harrison, R. G., and D. B. Stephenson, 2006: Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc. Roy. Soc. London. Ser. A, 462, 1221-1233, doi:10.1098/rspa.2005.1628.
  21. Jha, A., 2013: Cosmic ray mystery solved. The Guardian. [Available online at https://www.theguardian.com/science/2013/feb/14/cosmic-ray-mystery-solved.]
  22. Kerminen, V.-M., J. H. Seinfeld, N. M. Donahue, K. S. Carslaw, and J. Abbatt, 2012: The CERN CLOUD Experiment (ACP/AMT Inter-Journal SI). Atmos. Chem. Phys. & Atmos. Meas. Tech. [Available online at http://atmos-chem-phys.net/special_issue264html.]
  23. Kernthaler, S. C., R. Toumi, and J. D. Haigh, 1999: Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Lett., 26, 863-865. https://doi.org/10.1029/1999GL900121
  24. Kim, J., and Coauthors, 2016: Overview of the Korea Meteorological Administration (KMA)'s space weather service and R&D program. Proc. of the Asia-Oceania Space Weather Alliance Workshop, 98 pp.
  25. Kirkby, J., 2007: Cosmic rays and climate. Surv. Geophys., 28, 333-375. https://doi.org/10.1007/s10712-008-9030-6
  26. Kirkby, J., and Coauthors, 2011: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429-433, doi:10.1038/nature10343.
  27. Kirkby, J., and Coauthors, 2016: Ion-induced nucleation of pure biogenic particles. Nature, 533, 521-526, doi:10.1038/nature17953.
  28. Kniveton, D. R., 2004: Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J. Atmos. Sol.-Terr. Phy., 66, 1135-1142, doi:10.1016/j.jastp.2004.05.010.
  29. Kristjansson, J. E., and J. Kristiansen, 2000: Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res., 105, 11851-11863. https://doi.org/10.1029/2000JD900029
  30. Kristjansson, J. E., C. W. Stjern, F. Stordal, A. M. Fjaeraa, G. Myhre, and K. Jonasson, 2008: Cosmic rays, cloud condensation nuclei and clouds-a reassessment using MODIS data. Atmos. Chem. Phys., 8, 7373-7387.
  31. Kulmala, M., and Coauthors, 2010: Atmospheric data over a solar cycle: No connection between galactic cosmic rays and new particle formation. Atmos. Chem. Phys., 10, 1885-1898, doi:10.5194/acp-10-1885-2010.
  32. Laken, B. A., and J. Calogovic, 2011: Solar irradiance, cosmic rays and cloudiness over daily timescales. Geophys. Res. Lett., 38, L24811, doi:10.1029/2011GL049764.
  33. Laken, B. A., E. Palle, J. Calogovic, and E. M. Dunne, 2012a: A cosmic ray-climate link and cloud observations. J. Space Weather Spac., 2, A18, doi:10.1051/swsc/2012018.
  34. Laken, B. A., E. Palle, and H. Miyahara, 2012b: A decade of the Moderate Resolution Imaging Spectrometer: Is a solar-cloud link detectable? J. Climate, 25, 4430-4440, doi:10.1175/JCLI-D-11-00306.1.
  35. Lehtipalo, K., and Coauthors, 2016: The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. Nat. Commun., 7, 11594, doi:10.1038/ncomms11594.
  36. Letessier-Selvon, A., and T. Stanev, 2011: Ultrahigh energy cosmic rays. Rev. Mod. Phys., 83, 907-942, doi:10.1103/RevModPhys.83.907.
  37. Marsh, N. D., and H. Svensmark, 2000: Low cloud properties influenced by cosmic rays. Phys. Rev. Lett., 85, 5004-5007, doi:10.1103/PhysRevLett.85.5004.
  38. Moon, B.-K., and J.-G. Jhun, 2006: The relationship between 11-year solar cycle and midlatitude precipitation. J. Korean Meteor. Soc., 42, 307-312.
  39. Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, Eds., Cambridge University Press, 658-740.
  40. Ney, E. P., 1959: Cosmic radiation and the weather. Nature, 183, 451-452. https://doi.org/10.1038/183451a0
  41. Oh, S., J. W. Bieber, P. Evenson, J. Clem, Y. Yi, and Y. Kim, 2013: Record neutron monitor counting rates from gaalactic cosmic rays. J. Geophys. Res., 118, 5431-5436, doi:10.1002/jgra.50544.
  42. Owens, M. J., C. J. Scott, A. J. Bennett, S. R. Thomas, M. Lockwood, R. G. Harrison, and M. M. Lam, 2015: Lightning as a space-weather hazard: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophys. Res. Lett., 42, 9624-9632, doi:10.1002/2015GL066802.
  43. Pinto, N. O., I. R. C. A. Pinto, and O. Pinto Jr., 2013: The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009. J. Atmos. Sol.-Terr. Phy., 98, 12-21, doi:10.1016/j.jastp.2013.03.010.
  44. Pomerantz, M. A., 1984: Obituary: Scott Ellsworth Forbush. Phys. Today, 37, 111.
  45. Schlegel, K., G. Diendorfer, S. Thern, and M. Schmidt, 2001: Thunderstorms, lightning and solar activity-Middle Europe. J. Atmos. Sol.-Terr. Phy., 63, 1705-1713. https://doi.org/10.1016/S1364-6826(01)00053-0
  46. Schobesberger, S., and Coauthors, 2013: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl. Acad. Sci., 110, 17223-17228, doi:10.1073/pnas.1306973110.
  47. Scott, C. J., R. G. Harrison, M. J. Owens, M. Lockwood, and L. Barnard, 2014: Evidence for solar wind modulation of lightning. Environ. Res. Lett., 9, 055004, doi:10.1088/1748-9326/9/5/055004.
  48. Sloan, T., and A. Wolfendale, 2008: Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett., 3, 024001, doi:10.1088/1748-9326/3/2/024001.
  49. Sloan, T., and A. Wolfendale, 2013: Cosmic rays, solar activity and the climate. Environ. Res. Lett., 8, 045022, doi:10.1088/1748-9326/8/4/045022.
  50. Stringfellow, M. F., 1974: Lightning incidence in Britain and the solar cycle. Nature, 249, 332-333. https://doi.org/10.1038/249332a0
  51. Svensmark, H., 1998: Influence of cosmic rays on Earth's climate. Phys. Rev. Lett., 81, 5027-5030. https://doi.org/10.1103/PhysRevLett.81.5027
  52. Svensmark, H., 2000: Cosmic rays and Earth's climate. In Cosmic Rays and Earth: Space Sciences Series of ISSI, vol 10. J. W. Bieber Eds., Springer, 175-186.
  53. Svensmark, H., 2015: Cosmic rays, clouds and climate. Europhys. News, 46, 26-29, doi:10.1051/epn/2015204.
  54. Svensmark, H., and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phy., 59, 1225-1232, doi:10.1016/S1364-6826(97)00001-1.
  55. Svensmark, H., T. Bondo, and J. Svensmark, 2009: Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett., 36, L15101, doi:10.1029/2009GL038429.
  56. Svensmark, H., M. B. Enghoff, and J. O. P. Pedersen, 2013: Response of cloud condensation nuclei (> 50 nm) to changes in ion-nucleation. Phys. Lett. A, 377, 2343-2347, doi:10.1016/j.physleta.2013.07.004.
  57. Svensmark, J., M. B. Enghoff, N. J. Shaviv, and H. Svensmark, 2016: The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res., 121, 8152-8181, doi:10.1002/2016JA022689.
  58. Tinsley, B. A., and F. Yu, 2004: Atmospheric ionization and clouds as links between solar activity and climate. In Geophysical Monograph Series, Vol. 141, Solar Variability and Its Effects on Climate. J. M. Pap Eds., American Geophysical Union, 321-339, doi:10.1029/141GM22.
  59. Todd, M. C., and D. R. Kniveton, 2004: Short-term variability in satellite-derived cloud cover and galactic cosmic rays: Update. J. Atmos. Sol.-Terr. Phy., 66, 1205-1211, doi:10.1016/j.jastp.2004.05.002.
  60. Trostl, J., and Coauthors, 2016: The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 533, 527-531, doi:10.1038/nature18271.
  61. Tsuda, T., M. Shepherd, and N. Gopalswamy, 2015: Advancing the understanding of the Sun-Earth interaction-the Climate and Weather of the Sun-Earth System (CAWSES) II program. Progr. Earth Planet. Sci., 2, 28, doi:10.1186/s40645-015-0059-0.
  62. Yu, F., 2002: Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudness and climate. J. Geophys. Res., 107,SIA8-1-10, doi:10.1029/2001JA000248.
  63. WMO, 2016: Four-year plan for WMO activities related to space weather 2016-2019. World Meteorological Organization, Draft 2.1, 23 pp.