An Iris Detection Algorithm for Disease Prediction based Iridology

홍채학기반이 질병예측을 위한 홍채인식 알고리즘

  • Cho, Young-bok (Department of Computer Science, Chungbuk National University) ;
  • Woo, Sung-Hee (Department of of Medical Information&Engineering, Korea National University of Transportation) ;
  • Lee, Sang-Ho (Department of Computer Science, Chungbuk National University)
  • Received : 2016.09.19
  • Accepted : 2016.10.20
  • Published : 2017.01.31


Iris diagnosis is an alternative medicine to diagnose the disease of the patient by using different of the iris pattern, color and other characteristics. This paper proposed a disease prediction algorithm that using the iris regions that analyze iris change to using differential image of iris image. this method utilize as patient's health examination according to iris change. Because most of previous studies only find a sign pattern in a iris image, it's not enough to be used for a iris diagnosis system. We're developed an iris diagnosis system based on a iris images processing approach, It's presents the extraction algorithms of 8 major iris signs and correction manually for improving the accuracy of analysis. As a result, PNSR of applied edge detection image is about 132, and pattern matching area recognition presented practical use possibility by automatic diagnostic that presume situation of human body by iris about 91%.

홍채진단은 홍채의 패턴, 색 등 다른 특징들을 조사하여 환자의 병을 진단하는 대체의학이다. 이 논문에서는 촬영한 홍채이미지의 차영상을 이용해 홍채를 분석하고 홍채 변화에 따른 환자의 건강진단에 활용한 질병예측 알고리즘을 제안한다. 그러나 기존의 연구는 홍채영상을 이용하여 홍채 내의 특정 패턴을 검출하는 알고리즘 연구로 홍채의 다양한 정보로부터 건강 상태를 체크하는 진단시스템으로 사용하기에는 부족하다. 따라서 이 논문에서는 촬영된 홍채영상의 차영상을 이용해 질병의 조기 진단 및 질병의 전개과정을 명확히 판단한다. 또한 홍채영상으로부터 8가지 주요 홍채병소징후를 추출하고 검진의 정확도를 실험한 결과 패턴 매칭 기법에 의한 인식률 91%로 홍채진단의 자동화에 적용 가능하다.



Supported by : Korea Small and Medium Business Administration, CHUNGBUK TECHNOPARK, NIPA(National IT Industry Promotion Agency)


  1. J. Daugman, "How iris recognition works", IEEE Transactions on circuits and systems for video technology vol. 14, no. 1, pp. 21-30, Jan. 2004.
  2. D. R. Bamer, Practical Iridology and Sclerology, Woolland Publishing, 1996.
  3. P. Verma, M. Dubey, S. Basu and P. Verma, "Hough Transform Method for Iris Recognition-A Biometric Approach," International Journal of Engineering and Innovative Technology(IJEIT), vol. 1, pp. 43-48, June 2012.
  4. J. H. Rim, Iris Diagnosis By The Disease Concepts Of Traditional Medicine, Ph. D. Dissertation, Department Of Natural Healing Sciences Dongbang Graduate School, 2008.
  5. E.S Choi. "Study of relationship between hysteropathy and Bowel Disease in iridology," in Sun Mon University, vol.8, no. 6, pp.679-698, June 1986.
  6. D. Y. Hwang, B. H. Koh and I. B. Song, "An Analysis on The Characteristics of Sa - Sang Constitution Focusing on Iris Sign," International Journal of Kyung Hee University Medical Center, vol. 15, no. 2, pp.192-197, Feb. 1999.
  7. K. S. Kim, B. M. Park, Y. S. Cha, Y. J. Kim, J. M. Yun, S. E. Lee, S. C. Kang and S. Kim, "Clinical Study of Iris Diagnosis by means of Statistical Analysis," Journal of Oriental Physiology & Pathology, vol. 17, no. 6, pp. 1538-1542, June 2003.
  8. J. R. Parker, Algorithms for image processing and computer vision, John Wiley & Sons, 2010.
  9. R. C. Gonzalez, and R. E. Woods, Image Processing, Text book: Digital image processing,3th ed. Addison-wesley publishing company, 2007.
  10. R.M. Haralick, "Edge and region analysis for digital image data". in Proceeding of the Computer graphics and image processing, vol. 12, no. 1, pp. 60-73, July 1980.
  11. J. G. Daugman, "High confidence visual recognition of persons by a test of statistical independence," in Proceeding of the IEEE transactions on pattern analysis and machine intelligence, vol. 15, no. 11, pp. 1148-1161, Nov. 1993.
  12. S. I. No, J. H. Kim, "Contemporary Technology and Applications in Iris Recognition," Journal of Computing Science and Engineering, vol. 19, no. 7, pp. 4-13, July 2001.
  13. K. R. Park, "Iris detection Technology," Proceedings of the Korea Multimedia Society Conference, vol. 7, no. 2, pp. 23-31, Feb. 2003.
  14. K. Munstedt, S. El-Safadi, F. Bruck, M. Zygmunt, A. Hackethal, and H. R. Tinneberg, "Can iridology detect susceptibility to cancer? A prospective case-controlled study," Journal of Alternative & Complementary Medicine, vol. 11, pp. 515-519, July 2005.
  15. F. J. Echavarren Lezaun and J. I. Echavarren Otin, "Parameters provided by multiple reflex iridology," in Proceeding of the Focus on Alternative and Complementary Therapies, vol. 9, no. s1, pp.11-12, March 2004.
  16. K. S. Kim, B. M. Park, Y. S. Cha and Y. J. Kim, "Study of Iris Diagnosis by means of Statistical Analysis," Journal of Physiology & Pathology in Korean Medicine, vol. 17. no. 6, pp. 181-186, June 2003.

Cited by

  1. 홍채 분석기반 스트레스 진단시스템 vol.17, pp.9, 2017,
  2. 딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식 vol.15, pp.3, 2017,
  3. Deep Learning Algorithm for Prediction of Brain Diseases Using Iris Image vol.22, pp.6, 2017,