DOI QR코드

DOI QR Code

Evaluation of various nutrients removal models by using the data collected from stormwater wetlands and considerations for improving the nitrogen removal

인공습지에서 영양소 제거 설계모델 검토 및 질소제거 개선방안에 대한 고찰

  • Park, Kisoo (Dept. of Environmental Engineering, Hanseo University) ;
  • Kim, Youngchul (Dept. of Environmental Engineering, Hanseo University)
  • Received : 2016.12.15
  • Accepted : 2017.02.02
  • Published : 2017.02.28

Abstract

In this study, various types of nutrient models were tested by using two tears's water quality data collected from the stormwater wetland in Korea. Based on results, most important factor influencing nitrogen removal was hydraulic loading rate, which indicates that surface area of wetland is more important than its volumetric capacity, and model proposed by WEF was found to give a least error between measured and calculated values. For the phosphorus, in case assuming a power relationship between rate constant and temperature, the best prediction result were obtained, but temperature was most sensitive parameter affecting phosphorus removal. In addition, denitrification was always a limiting step for the nitrogen removal in this particular wetland mostly due to the lack of carbon source and high dissolved oxygen concentration. In this paper, several alternatives to improve nitrogen removal, including proper arrangement and designation of wetland elements and use of floating plants or synthetic fiber mat to control oxygen level and to capture the algal particles were proposed and discussed.

본 연구에서는 과거 2년에 걸쳐 강우유출수 처리목적의 인공습지로부터 수집된 수질자료를 바탕으로 지금까지 국외에서 개발된 다양한 형태의 영양소 모델의 적용성을 평가하였다. 검토결과 질소제거에 가장 큰 영향을 미치는 요인은 수온과 수리학적 부하율(HLR) 이었는데 습지의 수표면적이 습지의 용량에 비해 더 중요하게 작용했음을 시사해주고 있다. 질소제거는 미국 WEF(water environment federation)가 개발한 준경험적인 형태의 모델이 적합한 것으로 밝혀졌다. 한편 인 제거 모델은 수온과 제거속도상수의 관계를 Power Model로 보고 모의했을 때 실측치와 가장 가깝게 계산치를 산출할 수 있었으며 실측치의 증가와 감소경향을 비교적 정확하게 모의할 수 있었다($R^2=0.79$). 그러나 모든 시도에서 수온이 특정온도 이하로 감소했을 때 가장 심한 오차를 발생하여 취약한 예측성능을 보였다. 한편 인공습지에서 질소제거특성을 검토한 결과 질산화에 비하여 탈질이 저조한 것으로 나타났는데 그 이유는 탄소원의 부족과 높은 용존산소 농도로 인하여 Anoxic 조건의 미형성 때문으로 분석되었다. 질소제거 향상방안으로 용존산소의 제어와 탄소원의 확보차원에서 햇빛에 노출된 개방수역과 햇빛에 노출된 식생구역, 그리고 습지의 기능적 측면을 고려한 구성요소의 배분 및 부유 수생식물 및 무기성 여재를 이용하는 방안을 논의하였다.

Keywords

References

  1. American Public Health Association (APHA). (1998). Standard methods for the examination of water and wastewater, APHA, Washington D.C., USA.
  2. Boyd N., Gordon R., Cochrane L., Jamieson R., Dehaan R., Glass V. (2005). Constructed Wetlands for the Treatment of Agricultural Wastewater in Atlantic Canada, Atlantic committee on land and engineering. Canada.
  3. Choi M., Bteon M., Park H., Jeon N., Yoon S., Kong D. (2007). The Growth and Nutrient Removal Efficiency of Hydrophytes at an Artificial Vegetation Island, Lake Paldang, J. of Korean Society on Water Quality, 23(3), pp. 348-355.
  4. EPA(U. S. Environmental Protection Agency). (1993). National Conference on Urban Runoff Management: Enhancing Urban Watershed Management at the Local, County, and State Levels, U.S. EPA, USA.
  5. Guerra B.H., Park K., Kim Y. (2016). Oxygen Mass Balance Analysis in an Intermittently Aerated Wetland Receiving Stormwater from Livestock Farms, J. of Wetlands Recearch, 18(4), pp. 488-498. https://doi.org/10.17663/JWR.2016.18.4.488
  6. Halberson, N.V. (2004). Review of constructed Subsurface Flow vs. Surface Flow Wetlands, WSRC-TR-2004-00509, Savannah River Site, South Carolina, USA.
  7. Interstate Technology & Regulatory Council (ITRC). (2003). Technical and Regulatory Guidance Document for Constructed Treatment Wetlands, The Interstate Technology & Regulatory Council Wetlands Team, Washington D.C., USA.
  8. Kadlec, R.H. and R.L. Knight. (1996). Treatment Wetlands, CRC Press Taylor & Francis Group, Florida, USA
  9. Kim Y. and Kim W. (2000). Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Research, 34(13), pp. 3285-3294. https://doi.org/10.1016/S0043-1354(00)00068-3
  10. Kim Y., Kang M., Lee J. (2003a). Polishing of the Secondary effluent by High-rate Algal Pond System Coupled with Constructed Wetland, Jounal of Korean Society on water Quality, 19(5), pp. 543-554. [Korean Literature]
  11. Kim Y., Jung H., Lee J. (2003b). Evaluation of the Nitrogen Reduction in Water Hycinth Ponds Coupled with Waste Stabilization Ponds, Jounal of Korean Soc. Environ. Eng., 23(5), pp. 425-436. [Korean Literature]
  12. Kim Y., Chung P., An I. (2005). Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System, Jounal of Korean Soc. Environ. Eng., 27(3), pp. 323-329. [Korean Literature]
  13. Kim Y., Yoon K., Yi Q., Kim G. (2007). Guidelines for Nonpoint Source PollutionManagement in Agricultural Area, Korea Rural Community Corporation. [Korean Literature]
  14. Ministry of Environment (MOE). (1998). Certified Analytical Methods of Water Quality. [Korean Literature]
  15. Ministry of Environment (MOE). (2016). Design and Maintenance Guielines of the Stormwater BMPs, 11-1480000-001430-01. [Korean Literature]
  16. Reed S.C., Crites R.W., Middlebrooks E.J. (1995). Natural Systems for Waste Management and Treatment 2nd edn., McGraw-Hill, USA.
  17. Tchobanoglous and Burton (1991). Wastewater engineering: treatment, disposal, and reuse, McGraw-Hill, USA.
  18. United Nations Environment Programme (UNEP). (2004). Waste Stabilization Ponds and Constructed Wetlands: Design Manual, 92-807-2538-6, United Nations Environment Programme, USA.
  19. Water Pollution Control Federation (WPCF). (1990). Wetland system, Natural System for Wastewater Treatment, Manual of Practice FD-16, Chapter 9, Virginia, USA.