DOI QR코드

DOI QR Code

Identification of Flavonoids from Extracts of Opuntia ficus-indica var. saboten and Content Determination of Marker Components Using HPLC-PDA

손바닥선인장 추출물의 플라보노이드 구조 규명 및 HPLC-PDA를 이용한 지표성분의 함량 분석

  • Park, Seungbae (Department of Chemistry, Ulsan National Institute of Science and Technology) ;
  • Kang, Dong Hyeon (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Jin, Changbae (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyoung Ja (Molecular Recognition Research Center, Korea Institute of Science and Technology)
  • 박승배 (울산과학기술원 화학과) ;
  • 강동현 (한국과학기술연구원 분자인식연구센터) ;
  • 진창배 (한국과학기술연구원 분자인식연구센터) ;
  • 김형자 (한국과학기술연구원 분자인식연구센터)
  • Received : 2016.10.26
  • Accepted : 2016.11.15
  • Published : 2017.02.28

Abstract

This study aimed to establish an optimal extraction process and high-performance liquid chromatography (HPLC)-photodiode array (PDA) analytical method for determination of marker compounds, dihydrokaempferol (DHK) and 3-O-methylquercetin (3-MeQ), as a part of materials standardization for the development of health functional foods from stems of Opuntia ficus-indica var. saboten (OFS). The quantitative determination method of marker compounds was optimized by HPLC analysis, and the correlation coefficient for the calibration curve showed very good linearity. The HPLC-PDA method was applied successfully to quantification of marker compounds in OFS after validation of the method in terms of linearity, accuracy, and precision. Ethanolic extracts from stems of O. ficus-indica var. saboten (OFSEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 50, 70, and 80% ethanol for 3, 4, 5, and 6 h. Among OFSEs, OFS70E at $80^{\circ}C$ showed the highest contents of DHK and 3-MeQ of $26.42{\pm}0.65$ and $3.88{\pm}0.29mg/OFS100g$, respectively. Furthermore, OFSEs were determined for their antioxidant activities by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation (LPO) inhibitory activities in rat liver homogenate. OFS70E at $70^{\circ}C$ showed the most potent antioxidant activities with $IC_{50}$ values of $1.19{\pm}0.11$ and $0.89{\pm}0.09mg/mL$ in the DPPH radical scavenging and LPO inhibitory assays, respectively. To identify active components of OFS, various chromatographic separation of OFS70E led to isolation of 11 flavonoids: dihydrokaempferol, dihydroquercetin, 3-O-methylquercetin, quercetin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-galactoside, narcissin, kaempferol 7-O-glucoside, quercetin 3-O-galactoside, isorhamnetin, and kaempferol 3-O-rutinoside. The results suggest that standardization of DHK in OFSEs using HPLC-PDA analysis would be an acceptable method for the development of health functional foods.

손바닥선인장으로부터 기능성식품 개발을 위하여 최적의 에탄올 추출물 탐색과 HPLC-PDA 분석방법에 의한 validation을 실시하였다. 지표성분으로 dihydrokaempferol (DHK)과 3-O-methylquercetin(3-MeQ)을 선정하여 표준화를 실시하였으며 검출법 확립을 위한 정량분석은 Luna RP-18 칼럼($4.6{\times}250mm$, $5{\mu}m$)을 이용하여 1% 인산용액과 아세토니트릴을 전개 용매로 사용하였다. 용출은 1.0 mL/min의 유속으로 기울기 용출(gradient elution) 방법을 이용하였으며, 280 nm 파장에서는 DHK를, 360 nm 파장에서는 3-MeQ를 검출한 피크 면적을 이용하여 검량곡선을 작성하여 분석하였다. 본 연구에서 확립한 분석법으로 특이성, 직선성, 정밀성, 정확성, 회수율을 검색하였다. DHK의 검량선으로부터 상관계수($R^2$) 0.9998의 우수한 직선성과 intra-day와 inter-day 분석에서 97% 이상의 회수율과 3% 미만의 RSD를 나타내 정밀성과 정확성을 입증하였다. 3-MeQ의 검량선으로부터 상관계수($R^2$) 1의 우수한 직선성과 intra-day와 inter-day 분석에서 95% 이상의 회수율과 7% 미만의 RSD를 나타내 정밀성과 정확성을 입증하였다. DHK의 검출한계는 $1.38{\mu}g/mL$, 정량한계는 $4.18{\mu}g/mL$로 나타났으며, 3-MeQ의 검출한계는 $3.49{\mu}g/mL$, 정량한계는 $10.6{\mu}g/mL$로 나타났다. 손바닥선인장 에탄올 추출물(OFSEs)은 70과 $80^{\circ}C$에서 50, 70, 80% 에탄올로 3, 4, 5, 6시간 동안 각각 추출하였으며, 지표물질의 검량곡선을 활용하여 각각의 OFSEs로부터 두 종의 지표물질 함량을 분석하였다. 본 시험법으로 분석한 지표물질의 함량은 $80^{\circ}C$에서 추출한 70% OFSE가 DHK $26.42{\pm}0.65mg/OFS100g$, 3-MeQ $3.88{\pm}0.29mg/OFS100g$의 함량을 나타내 가장 우수하게 나타났다. 다양한 OFSEs에 대하여 DPPH 자유 라디칼 소거효능과 쥐의 간 균질액을 이용한 지질과산화 저해 효능에 대한 항산화 효능은 지표물질의 함량이 가장 높은 70% OFSE에서 우수한 효능을 나타내 본 연구에서 확립한 원료 표준화를 위한 적합한 분석법임이 검증되었다. 따라서 본 연구를 통하여 HPLC-PDA를 이용한 손바닥선인장 에탄올 추출물의 DHK와 3-MeQ의 분석법은 개별인정형 건강 기능식품 기능성 원료 개발을 위한 유용한 자료로 활용될 것으로 생각한다.

Keywords

References

  1. Ahn DK. 1998. Illustrated book of Korean medicinal herbs. Kyohaksa, Seoul, Korea. p 497.
  2. Lopez AD. 1995. Review: use of the fruits and stems of prickly pear cactus (Opuntia spp.) into human food. Food Sci Technol Int 1: 65-74. https://doi.org/10.1177/108201329500100202
  3. Choi J, Lee CK, Lee YC, Moon YI, Park HJ, Han YN. 2002. Biological activities of the extracts from fruit and stem of prickly pear (Opuntia ficus- indica var. saboten) II. Effects on dietary induced hyperlipidemia. Kor J Pharmacogn 33: 230-237.
  4. Park EH, Hwang SE, Kahng JH. 1998. Anti- inflammatory activity of Opuntia ficus- indica. Yakhak Hoeji 42: 621-626.
  5. Butterweck V, Semlin L, Feistel B, Pischel I, Bauer K, Verspohl EJ. 2011. Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytother Res 25: 370-375.
  6. Kim SH, Jeon BJ, Kim DH, Kim TI, Lee HK, Han DS, Lee JH, Kim TB, Kim JW, Sung SH. 2012. Prickly pear cactus (Opuntia ficus indica var. saboten) protects against stress-induced acute gastric lesions in rats. J Med Food 15: 968-973. https://doi.org/10.1089/jmf.2012.2282
  7. Kwon MC, Han JG, Jeong HS, Qadir SA, Choi YB, Ko JR, Lim TI, Lee HY. 2008. Enhancement of immune activities of Opuntia ficus-indica L. Miller by ultrasonification extraction process. Korean J Med Crop Sci 16: 1-8.
  8. Lee JC, Kim HR, Kim J, Jang YS. 2002. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J Agric Food Chem 50: 6490-6496. https://doi.org/10.1021/jf020388c
  9. Moran-Ramos S, Avila-Nava A, Tovar AR, Pedraza-Chaverri J, Lopez-Romero P, Torres N. 2012. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats. J Nutr 142: 1956-1963. https://doi.org/10.3945/jn.112.165563
  10. Galati EM, Monforte MT, Tripodo MM, d'Aquino A, Mondello MR. 2001. Antiulcer activity of Opuntia ficus indica (L.) Mill. (Cactaceae): ultrastructural study. J Ethnopharmacol 76: 1-9. https://doi.org/10.1016/S0378-8741(01)00196-9
  11. Lee EB, Hyun JE, Li DW, Moon YI. 2002. Effects of Opuntia ficus-indica var. saboten stem on gastric damages in rats. Arch Pharm Res 25: 67-70. https://doi.org/10.1007/BF02975264
  12. Lee NH, Yoon JS, Lee BH, Choi BW, Park KH. 2000. Screening of the radical scavenging effects, tyrosinase inhibition and anti-allergic activities using Opuntia ficusindica. Korean J Pharmacogn 31: 412-415.
  13. Wie MB. 2000. Protective effects of Opuntia ficus-indica and Saururus chinensis on free radical-induced neuronal injury in mouse cortical cell cultures. Yakhak Hoeji 44: 613-619.
  14. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J. 2003. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficusindica var. saboten. Brain Res 965: 130-136. https://doi.org/10.1016/S0006-8993(02)04150-1
  15. Jung SY, Kim HJ, Lee J, Cho J, Lee YS, Jin C. 2012. Neuroprotective effects of quercetin 3- O- methyl ether, quercetin and (TEX>${\pm}$) - dihydroquercetin in a rat model of transient focal cerebral ischemia. Bull Korean Chem Soc 33: 2443-2446. https://doi.org/10.5012/bkcs.2012.33.7.2443
  16. Kim JM, Kim DH, Park SJ, Park DH, Jung SY, Kim HJ, Lee YS, Jin C, Ryu JH. 2010. The n-butanolic extract of Opuntia ficus- indica var. saboten enhances long- term memory in the passive avoidance task in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 34: 1011-1017. https://doi.org/10.1016/j.pnpbp.2010.05.015
  17. Saleem M, Kim HJ, Han CK, Jin C, Lee YS. 2006. Secondary metabolites from Opuntia ficus-indica var. saboten. Phytochemistry 67: 1390-1394. https://doi.org/10.1016/j.phytochem.2006.04.009
  18. KFDA. 2004. Analytical method guideline about validation of drugs and etc. Korea Food & Drug Administration, Seoul, Korea. p 1-18.
  19. Lee JS, Kim HJ, Park H, Lee YS. 2002. New diarylheptanoids from the stems of Carpinus cordata. J Nat Prod 65: 1367-1370. https://doi.org/10.1021/np020048l
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  21. Sanz MJ, Ferrandiz ML, Cejudo M, Terencio MC, Gil B, Bustos G, Ubeda A, Gunasegaran R, Alcaraz MJ. 1994. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica 24: 689-699. https://doi.org/10.3109/00498259409043270
  22. Jeong SJ, Jun KY, Kang TH, Ko EB, Kim YC. 1999. Flavonoids from the fruits of Opuntia ficus-indica var. saboten. Kor J Pharmacogn 30: 84-86.
  23. De Leo M, De Abreu MB, Pawlowska AM, Cioni PL, Braca CA. 2010. Profiling the chemical content of Opuntia ficusindica flowers by HPLC-PDA-ESI-MS and GC/EIMS analyses. Phytochem Lett 3: 48-52. https://doi.org/10.1016/j.phytol.2009.11.004
  24. Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H. 2014. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L.. J Ethnopharmacol 151: 944-950. https://doi.org/10.1016/j.jep.2013.12.003
  25. Yeddes N, Cherif JK, Guyot S, Sotin H, Ayadi MT. 2013. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2: 37-51. https://doi.org/10.3390/antiox2020037

Cited by

  1. An oral toxicity test in rats and a genotoxicity study of extracts from the stems of Opuntia ficus-indica var. saboten vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-019-2442-7