DOI QR코드

DOI QR Code

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed (National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College, University of Tasmania) ;
  • Fleming, Alan (National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College, University of Tasmania) ;
  • Macfarlane, Gregor (National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College, University of Tasmania) ;
  • Leong, Zhi (National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College, University of Tasmania)
  • Received : 2016.03.21
  • Accepted : 2016.08.09
  • Published : 2017.01.31

Abstract

Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Keywords

References

  1. Baudry, V., Babarit, A., Clement, A., 2013. An overview of analytical, numerical and experimental methods for modelling oscillating water columns. In: 10th European Wave and Tidal Energy Conference (EWTEC), September 2-5, Aalborg, Denmark.
  2. CD-Adapco, 2015. User Guide STAR-CCM+ Version 10.02.
  3. Choi, J., Yoon, S.B., 2009. Numerical simulations using momentumsource wavemaker applied to RANS equation model. Coast. Eng. 56 (10), 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009
  4. Crema, I., Simonetti, I., Cappietti, L., Oumeraci, H., 2015. Laboratory experiments on oscillating water column wave energy converters integrated in a very large floating structure. In: 11th European Wave and Tidal Energy Conference (EWTEC), September 6-11, Nantes, France.
  5. Dalrymple, R.A., Dean, R.G., 1991. Water Wave Mechanics for Engineers and Scientists. World Scientific Publishing Company, New Jersey.
  6. Drew, B., Plummer, A., Sahinkaya, M.N., 2009. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers. Part A J. Power Energy 223 (8), 887-902. https://doi.org/10.1243/09576509JPE782
  7. Elhanafi, A., Fleming, A., Leong, Z., Macfarlane, G., 2016a. Effect of RANSbased turbulence models on nonlinear wave generation in a two-phase numerical wave tank. Prog. Comput. Fluid Dyn. (in press).
  8. Elhanafi, A., Fleming, A., MacFarlane, G., Leong, Z., 2016b. Numerical energy balance analysis for an onshore oscillating water column wave energy converter. Energy (provisionally accepted).
  9. Evans, D., 1978. The oscillating water column wave-energy device. IMA J. Appl. Math. 22 (4), 423-433. https://doi.org/10.1093/imamat/22.4.423
  10. Evans, D., 1982. Wave-power absorption by systems of oscillating surface pressure distributions. J. Fluid Mech. 114, 481-499. https://doi.org/10.1017/S0022112082000263
  11. Evans, D., Porter, R., 1995. Hydrodynamic characteristics of an oscillating water column device. Appl. Ocean Res. 17 (3), 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  12. Falcao, A.F., Henriques, J.C., 2014. Model-prototype similarity of oscillatingwater-column wave energy converters. Int. J. Mar. Energy 6, 18-34. https://doi.org/10.1016/j.ijome.2014.05.002
  13. Falcao, A.F., Henriques, J.C., 2015. Oscillating-water-column wave energy converters and air turbines: a review. Renew. Energy 85, 1391-1424.
  14. Falcao, A.d.O., Sarmento, A., 1980. Wave generation by a periodic surface pressure and its application in wave-energy extraction. In: 15th International Congress of Theoretical and Applied Mechanics, Toronto, Canada.
  15. Falnes, J., McIver, P., 1985. Surface wave interactions with systems of oscillating bodies and pressure distributions. Appl. Ocean Res. 7 (4), 225-234. https://doi.org/10.1016/0141-1187(85)90029-X
  16. Fleming, A., Penesis, I., Goldsworthy, L., Macfarlane, G., Bose, N., Denniss, T., 2011. Phase averaged flow analysis in an oscillating water column wave energy converter. In: ASME, 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, June 19-24, pp. 475-484.
  17. Fleming, A., Penesis, I., Macfarlane, G., Bose, N., Denniss, T., 2012a. Energy balance analysis for an oscillating water column wave energy converter. Ocean. Eng. 54, 26-33. https://doi.org/10.1016/j.oceaneng.2012.07.002
  18. Fleming, A., Penesis, I., Macfarlane, G., Bose, N., Hunter, S., 2012b. Phase averaging of the velocity fields in an oscillating water column using splines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 226 (4), 335-345, 1475090212439826. https://doi.org/10.1177/1475090212439826
  19. Fleming, A., Penesis, I., Goldsworthy, L., Macfarlane, G., Bose, N., Denniss, T., 2013. Phase averaged flow analysis in an oscillating water column wave energy converter. J. Offshore Mech. Arct. Eng. 135 (2), 021901. https://doi.org/10.1115/1.4007076
  20. Goda, Y., Suzuki, T., 1976. Estimation of incident and reflected waves in random wave experiments. Coast. Eng. Proc. 1 (15).
  21. Graw, K.-U., Schimmels, S., Lengricht, J., 2000. Quantifying Losses Around the Lip of an OWC by Use of Particle Image Velocimetry (PIV). LACER-Leipzig Annual Civil Engineering Report, Aalborg, Denmark.
  22. He, F., Huang, Z., 2014. Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study. Ocean. Eng. 88, 618-626. https://doi.org/10.1016/j.oceaneng.2014.04.023
  23. He, F., Huang, Z., Law, A.W.-K., 2012. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study. Ocean. Eng. 51, 16-27. https://doi.org/10.1016/j.oceaneng.2012.05.008
  24. He, F., Huang, Z., Law, A.W.-K., 2013. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Appl. Energy 106, 222-231. https://doi.org/10.1016/j.apenergy.2013.01.013
  25. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  26. Hong, D., Hong, S., Hong, S., 2004. Numerical study of the motions and drift force of a floating OWC device. Ocean. Eng. 31 (2), 139-164. https://doi.org/10.1016/S0029-8018(03)00118-5
  27. Hong, K., Shin, S.-H., Hong, D.-C., Choi, H.-S., Hong, S.-W., 2007. Effects of shape parameters of OWC chamber in wave energy absorption. In: The Seventeenth International Offshore and Polar Engineering Conference, (ISOPE), Lisbon, Portugal, July 1-6, pp. 428-433.
  28. Iturrioz, A., et al., 2014. Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean. Eng. 76, 65-74. https://doi.org/10.1016/j.oceaneng.2013.11.023
  29. Iturrioz, A., Guanche, R., Lara, J., Vidal, C., Losada, I., 2015. Validation of OpenFOAM$^{(R)}$ for oscillating water column three-dimensional modeling. Ocean. Eng. 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051
  30. Kamath, A., Bihs, H., Arntsen, O.A., 2015a. Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean. Eng. 102, 40-50. https://doi.org/10.1016/j.oceaneng.2015.04.043
  31. Kamath, A., Bihs, H., Arntsen, O.A., 2015b. Numerical modeling of power take-off damping in an oscillating water column device. Int. J. Mar. Energy 10, 1-16. https://doi.org/10.1016/j.ijome.2015.01.001
  32. Lopez, I., Pereiras, B., Castro, F., Iglesias, G., 2014. Optimisation of turbineinduced damping for an OWC wave energy converter using a RANS-VOF numerical model. Appl. Energy 127, 105-114. https://doi.org/10.1016/j.apenergy.2014.04.020
  33. Lopez, I., Castro, A., Iglesias, G., 2015. Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry. Energy 83, 89-103. https://doi.org/10.1016/j.energy.2015.01.119
  34. Lopez, I., Pereiras, B., Castro, F., Iglesias, G., 2016. Holistic performance analysis and turbine-induced damping for an OWC wave energy converter. Renew. Energy 85, 1155-1163. https://doi.org/10.1016/j.renene.2015.07.075
  35. Luo, Y., Nader, J.-R., Cooper, P., Zhu, S.-P., 2014. Nonlinear 2d analysis of the efficiency of fixed oscillating water column wave energy converters. Renew. Energy 64, 255-265. https://doi.org/10.1016/j.renene.2013.11.007
  36. Mansard, E.P., Funke, E., 1980. The measurement of incident and reflected spectra using a least squares method. Coast. Eng. Proc. 1 (17).
  37. Mendes, A., Monteiro, W., 2007. Performance analysis of a model of OWC energy converter in non-linear waves. In: 7th European Wave and Tidal Energy Conference (EWTEC), September 11-13, Porto, Portugal.
  38. Morris-Thomas, M.T., Irvin, R.J., Thiagarajan, K.P., 2007. An investigation into the hydrodynamic efficiency of an oscillating water column. J. Offshore Mech. Arct. Eng. 129 (4), 273-278. https://doi.org/10.1115/1.2426992
  39. Morrison, I.G., 1995. The Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter.
  40. Muller, G., Whittaker, T.J., 1995. Visualisation of flow conditions inside a shoreline wave power-station. Ocean. Eng. 22 (6), 629-641. https://doi.org/10.1016/0029-8018(94)00032-3
  41. Ning, D.-Z., Shi, J., Zou, Q.-P., Teng, B., 2015. Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method). Energy 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012
  42. Ning, D.-Z., Wang, R.-Q., Zou, Q.-P., Teng, B., 2016. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter. Appl. Energy 168, 636-648. https://doi.org/10.1016/j.apenergy.2016.01.107
  43. Sarmento, A., 1992. Wave flume experiments on two-dimensional oscillating water column wave energy devices. Exp. Fluids 12 (4-5), 286-292. https://doi.org/10.1007/BF00187307
  44. Sarmento, A.J., Falcao, A.d.O., 1985. Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. J. Fluid Mech. 150, 467-485. https://doi.org/10.1017/S0022112085000234
  45. Sheng, W., Alcorn, R., Lewis, T., 2014. Numerical assessment on primary wave energy conversion of oscillating water columns. (OMAE2014-23218). In: ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, USA, June 8-13.
  46. Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H., 2015. Numerical modelling of fixed oscillating water column wave energy conversion devices: toward geometry hydraulic optimization. (OMAE2015-42056). In: ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John's, Newfoundland, Canada, May 31-June 5.
  47. Teixeira, P.R., Davyt, D.P., Didier, E., Ramalhais, R., 2013. Numerical simulation of an oscillating water column device using a code based on navier-stokes equations. Energy 61, 513-530. https://doi.org/10.1016/j.energy.2013.08.062
  48. Thiebaut, F., Pascal, R.e, Andreu, A.G.a., 2015. Investigation into the calibration of orifices used in OWC tank testing. In: 11th European Wave and Tidal Energy Conference (EWTEC), September 6-11, Nantes, France.
  49. Tseng, R.-S., Wu, R.-H., Huang, C.-C., 2000. Model study of a shoreline wave-power system. Ocean. Eng. 27 (8), 801-821. https://doi.org/10.1016/S0029-8018(99)00028-1
  50. Zhang, Y., Zou, Q.-P., Greaves, D., 2012. Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renew. Energy 41, 159-170. https://doi.org/10.1016/j.renene.2011.10.011

Cited by

  1. Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter vol.9, pp.9, 2017, https://doi.org/10.3390/su9091599
  2. Validation of a Numerical Program for Analyzing Kinetic Energy Potential in the Bangka Strait, North Sulawesi, Indonesia vol.306, pp.None, 2017, https://doi.org/10.1088/1757-899x/306/1/012102
  3. A Study on the Performance Evaluation of the OWC WEC Applicable to Breakwaters using CFD vol.21, pp.4, 2018, https://doi.org/10.7846/jkosmee.2018.21.4.317
  4. Study on an Oscillating Water Column Wave Power Converter Installed in an Offshore Jacket Foundation for Wind-Turbine System Part I: Open Sea Wave Energy Converting Efficiency vol.9, pp.2, 2017, https://doi.org/10.3390/jmse9020133
  5. Regression Diagnostics with Predicted Residuals of Linear Model with Improved Singular Value Classification Applied to Forecast the Hydrodynamic Efficiency of Wave Energy Converters vol.11, pp.7, 2017, https://doi.org/10.3390/app11072990
  6. A Theoretical Study of the Hydrodynamic Performance of an Asymmetric Fixed-Detached OWC Device vol.13, pp.19, 2017, https://doi.org/10.3390/w13192637
  7. Effective Method for Evaluating Airflow Rate of Oscillating-Water-Column Pilot Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9111884
  8. Experimental Investigation of the Small-scale Fixed Multi-chamber OWC Device vol.34, pp.1, 2021, https://doi.org/10.1186/s10033-021-00641-9