DOI QR코드

DOI QR Code

Nano Dispersion of Aggregated Y2O3:Eu Red Phosphor and Photoluminescent Properties of Its Nanosol

응집된 Y2O3:Eu Red 형광체의 나노분산 및 나노졸의 형광특성

  • Lee, Hyun Jin (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Ban, Se Min (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Jung, Kyeong-Youl (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Byung-Ki (CQV Co) ;
  • Kang, Kwang-Jung (CQV Co) ;
  • Kim, Dae Sung (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
  • Received : 2016.11.03
  • Accepted : 2016.12.22
  • Published : 2017.02.27

Abstract

Nanosized and aggregated $Y_2O_3:Eu$ Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of $Y_2O_3:Eu$ red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated $Y_2O_3:Eu$ Red phosphor under bead mill wet process. The dispersion property of the $Y_2O_3:Eu$ nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size ($D_{50}$) of $Y_2O_3:Eu$ nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of $Y_2O_3:Eu$ nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of $Y_2O_3:Eu$ nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.

Keywords

References

  1. K. Y. Jung and W. H. Kim, Korean Chem. Eng. Res., 53, 620 (2015). https://doi.org/10.9713/kcer.2015.53.5.620
  2. K. Y. Jung, C. H. Lee and Y. C. Kang, Mater. Lett., 59, 2451 (2005). https://doi.org/10.1016/j.matlet.2005.03.017
  3. E. J. Bosze, J. Mckittrick and G. A. Hirata, Mater. Sci. Eng. B, 93, 265 (2003).
  4. Y. Sun, L. Qi, M. Lee B. I. Lee, W. D. Samuels and G. J. Exarhos, J. Lumin., 97, 265 (2003).
  5. I. W. Lenggoro, C. Panatarani and K. Okuyama, Mater. Sci. Eng. B, 113, 60 (2004). https://doi.org/10.1016/j.mseb.2004.06.020
  6. Z. Yongqing, Y. Zihua, D. Shiwen, Q. Mande and Z. Jian, Mater. Lett., 57, 2901 (2003). https://doi.org/10.1016/S0167-577X(02)01394-0
  7. Y. C. You, K. D. Kim, H. S. Lim and H. T. Kim, J. Korean Ind. Eng. Chem., 19, 27 (2008).
  8. J. Zhang, Z. Zhang, Z. Tang, Y. Lin and Z. Zheng, J. Mater. Process. Tech., 121, 265 (2002). https://doi.org/10.1016/S0924-0136(01)01263-8
  9. O. Milosevic, L. Mancic, B. Jordovic, R. Maric, S. Ohara and T. Fukui, J. Mater. Process. Tech., 143-144, 501 (2003). https://doi.org/10.1016/S0924-0136(03)00305-4
  10. T. Masaki, S. J. Kim, H. Watanabe, K. Miyamoto, M. Ohno and K. H. Kim, J. Ceram. Process. Res., 4, 135 (2003).
  11. M.-G. Park, H. Kim, H. M. Lim, J. Choi and D. S. Kim, Korean J. Mater. Res., 26, 136 (2016). https://doi.org/10.3740/MRSK.2016.26.3.136
  12. J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, J. Phys. Chem. B, 105, 11098 (2001). https://doi.org/10.1021/jp0119330
  13. H. S. Na, M.-G. Park, H. M. Lim and D. S. Kim, Korean J. Mater. Res., 26, 733 (2016). https://doi.org/10.3740/MRSK.2016.26.12.733
  14. H.-H. Lim, S.-H. Lee, H. M. Kim and D. S. Kim, Appl. Mech. Mater., 481, 66 (2014)
  15. M. J. Park, J. W. Ahn and H. Kim, Korean J. Ceram. Soc., 38, 343 (2001).