DOI QR코드

DOI QR Code

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su (Department of Electronic Materials Engineering College of Engineering The University of Suwon)
  • Received : 2016.10.12
  • Accepted : 2017.01.02
  • Published : 2017.02.27

Abstract

The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Keywords

References

  1. M. A. Green, K. Emery, D. L. King, Y. Hishikawa and W. Warta, Prog. Photovolt. Res. Appl., 15, 35 (2007). https://doi.org/10.1002/pip.741
  2. J. H. Kim, M. J. Chu, Y. D. Chung, R. M. Park, H. K. Sung, Electron.Telecommun. Trend Anal., 23, 2 (2008).
  3. SunPower A-300 Cell, SunPower Corp., San Jose, CA, USA (2005).
  4. Medici Two-Dimensional Device Simulation Program, Ver. 2.2, User's Manual, vol. 3, Technology Modeling Associates, Inc., Sunnyvale, CA, Jun. 1996, pp. 7.1-7.10.
  5. K. S. Choe, Solid State Sci., 12, 1948 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.07.034
  6. K. S. Choe, Korean J. Mater. Res., 25, 487 (2015). https://doi.org/10.3740/MRSK.2015.25.9.487