DOI QR코드

DOI QR Code

N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio)

  • Seo, Kwon-Sang (Dept. of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (Dept. of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Ho-Jun (Dept. of Electrical and Computer Engineering, Pusan National University)
  • 투고 : 2016.12.12
  • 심사 : 2017.01.02
  • 발행 : 2017.02.01

초록

A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

키워드

참고문헌

  1. J. Yota, J. Hander, and A. A. Saleh, "A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films", J. Vac. Sci. Technol. A, vol. 18, No. 2, pp. 372-376, Mar. 2000. https://doi.org/10.1116/1.582195
  2. H. Nagel, A. G. Aberle, and R. Hezel, "Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide", Prog. Photovolt: Res. Appl., vol. 7, No. 4, pp. 245-260, Jul. 1999. https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<245::AID-PIP255>3.0.CO;2-3
  3. A. G. Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovolt: Res. Appl., vol. 8, No. 5, pp. 473-487, Sep. 2000. https://doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
  4. S. Winderbaum, F. Yun, and O. Reinhold, "Application of plasma enhanced chemical vapor deposition silicon nitride as a double layer antireflection coating and passivation layer for polysilicon solar cells", J. Vac. Sci. Technol. A, vol. 15, No. 3, pp. 1020-1025, May 1997. https://doi.org/10.1116/1.580509
  5. F. L. Wong, M. K. Fung, S. L. Tao, S. L. Lai, W. M. Tsang, K. H. Kong, W. M. Choy, C. S. Lee, and S. T. Lee, "Long-lifetime thin-film encapsulated organic light-emitting diodes", J. Appl. Phys., vol. 104, No. 1, pp. 014509 (4pp), Jul. 2008. https://doi.org/10.1063/1.2940727
  6. A. Masuda, H. Umemoto, and H. Matsumura, "Various applications of silicon nitride by catalytic chemical vapor deposition for coating, passivation and insulating films", Thin Solid Films, vol. 501, No. 1-2, pp. 149-153, Apr. 2006. https://doi.org/10.1016/j.tsf.2005.07.172
  7. M. Bavafa, H. Ilati, and B. Rashidian, "Comprehensive simulation of the effects of process conditions on plasma enhanced chemical vapor deposition of silicon nitride", Semicond. Sci. Technol., vol. 23, No. 9, pp. 095023 (19pp), Aug. 2008. https://doi.org/10.1088/0268-1242/23/9/095023
  8. H. J. Kim, W. Yang, and J. Joo, "Effect of electrode spacing on the density distributions of electrons, ions, and metastable and radical molecules in $SiH_4/NH_3/N_2/He$ capacitively coupled plasmas", J. Appl. Phys., vol. 118, No. 4, pp. 043304 (18 pp), Jul. 2015. https://doi.org/10.1063/1.4927531
  9. COMSOL Multiphysics Version 5.2 User Guide, Nov. 2015.
  10. A. O. Brezmes and C. Breitkopf, "Fast and reliable simulations of argon inductively coupled plasma using COMSOL", Vacuum, vol. 116, pp. 65-72, Jun. 2015. https://doi.org/10.1016/j.vacuum.2015.03.002
  11. E. Gogolides and H. H. Sawin, "Continuum modeling of radio-frequency glow discharges. I. Theory and results for electropositive and electronegative gases", J. Appl. Phys., vol 72, No. 9, pp. 3971-3987, Nov. 1992. https://doi.org/10.1063/1.352250
  12. E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, M. J. Pinheiro, C. M. Ferreira, and B. Gordiets, "Microwave air plasma source at atmospheric pressure: Experiment and theory", J. Appl. Phys., vol. 108, No. 12, pp. 123305 (18 pp), Dec. 2010. https://doi.org/10.1063/1.3525245
  13. F. J. Gordillo-Vazquez, "Air plasma kinetics under the influence of sprites", J. Phys. D: Appl. Phys., vol. 41, No. 23, pp. 234016 (33 pp), Nov. 2008. https://doi.org/10.1088/0022-3727/41/23/234016
  14. Q. Xiong, A. Y. Nikiforov, X. P. Lu, and C. Leys, "High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system", J. Phys. D: Appl. Phys., vol. 43, No. 41, pp. 415201 (10 pp), Sep. 2010. https://doi.org/10.1088/0022-3727/43/41/415201
  15. E. Tatarova, F. M. Dias, B. Gordiets, and C. M. Ferreira, "Molecular dissociation in $N_2-H_2$ microwave discharges", Plasma Sources Sci. Technol., vol. 14, No. 1, pp. 19-31, Feb. 2005. https://doi.org/10.1088/0963-0252/14/1/003
  16. A. Bogaerts, "Hybrid Monte Carlo - Fluid model for studying the effects of nitrogen addition to argon glow discharges", Spectrochim. Acta Part B, vol. 64, No. 2, pp. 126-140, Feb. 2009. https://doi.org/10.1016/j.sab.2008.11.004
  17. G. R. Nowling, S. E. Babayan, X. Yang, M. Moravej, R. Agarwal, and R. F. Hicks, "The reactions of silane in the afterglow of a helium-nitrogen plasma", Plasma Sources Sci. Technol., vol. 13, No. 1, pp. 156-163, Feb. 2004. https://doi.org/10.1088/0963-0252/13/1/020
  18. A. Dollet, J. P. Couderc, and B. Despax, "Analysis and numerical modelling of silicon nitride deposition in a plasma-enhanced chemical vapour deposition reactor. Part I: bidimensional modelling", Plasma Sources Sci. Technol., vol. 4, No. 1, pp. 94-106, Feb. 1995. https://doi.org/10.1088/0963-0252/4/1/010
  19. M. J. Kushner, "Simulation of the gas-phase processes in remote-plasma-activated chemical -vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures", J. Appl. Phys., vol. 71, No. 9, pp. 4173-4189, May 1992. https://doi.org/10.1063/1.350821
  20. L. Xiang-Mei, S. Yuan-Hong, J. Wei, and Y. Lin, "The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled $SiH_4/NH_3/N_2$ plasmas: Two-dimensional simulations", Chin. Phys. B, vol. 22, No. 4, pp. 045204 (6 pp), Apr. 2013. https://doi.org/10.1088/1674-1056/22/4/045204
  21. P. J. van den Oever, J. H. van Helden, J. L. van Hemmen, R. Engeln, D. C. Schram, M. C. M. van de Sanden, and W. M. M. Kessels, "N, NH, and $NH_2$ radical densities in a remote $Ar-NH_3-SiH_4$ plasma and their role in silicon nitride deposition", J. Appl. Phys., vol. 100, No. 9, pp. 093303 (10 pp), Nov. 2006. https://doi.org/10.1063/1.2358330
  22. D. T. Murley, R. A. G. Gibson, B. Dunnett, A. Goodyear, and I. D. French, "Influence of gas residence time on the deposition of nitrogen-rich amorphous silicon nitride", J. Non-Cryst. Solids, vol. 187, pp. 324-328, Jan. 1995. https://doi.org/10.1016/0022-3093(95)00158-1
  23. J. A. Theil, S. V. Hattangady, and G. Lucovsky, "Effects of $NH_3$ and $N_2$ source gases and plasma excitation frequencies on the reaction chemistry for $Si_3N_4$ thin-film growth by remote plasma-enhanced chemical-vapor deposition", J. Vac. Sci. Technol. A, vol. 10, No. 4, pp. 719-727, Jul. 1992. https://doi.org/10.1116/1.577716
  24. D. L. Smith, "Controlling the plasma chemistry of silicon nitride and oxide deposition from silane", J. Vac. Sci. Technol. A, vol. 11, No. 4, pp. 1843-1850, Jul. 1993. https://doi.org/10.1116/1.578436
  25. C. Bohm, J. Perrin, and P. R. i Cabarrocas, "Ion-induced secondary electron emission in $SiH_4$ glow discharge, and temperature dependence of hydrogenated amorphous silicon deposition rate", J. Appl. Phys., vol. 73, No. 5, pp. 2578-2580, Mar. 1993. https://doi.org/10.1063/1.353070