DOI QR코드

DOI QR Code

Thermal property of geopolymer on fly ash-blast furnace slag system with the addition of alumina aggregate

알루미나 골재 첨가에 따른 플라이애쉬-고로슬래그계 지오폴리머의 열적특성

  • Kim, Jin-Ho (Department of Nano Applied Engineering, Kangwon National University) ;
  • Nam, In-Tak (Department of Nano Applied Engineering, Kangwon National University) ;
  • Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
  • 김진호 (강원대학교 나노응용공학과) ;
  • 남인탁 (강원대학교 나노응용공학과) ;
  • 박현 (강원대학교 신소재공학과) ;
  • 김경남 (강원대학교 신소재공학과)
  • Received : 2016.11.09
  • Accepted : 2017.01.06
  • Published : 2017.02.28

Abstract

In this study, the higher temperature thermal property of the fly ash-blast furnace slag system Geopolymer including alumina aggregate was investigated whether that Geopolymer will be or not useful as thermal-resistant construction materials. Under every mixing conditions, the crack on the surface of hardened body was not observed up to $800^{\circ}C$ and it corresponded with fact that level of changes was not significant before and after heating process. Residual compressive strength is most high when mixing Blast-Furnace Slag ratio is 60 wt% until temperature reaches $800^{\circ}C$. The major hydrates of hardened body of Geopolymer; amorphous halo pattern between $20{\sim}35^{\circ}$ (2theta) and mullite ($3Al_2O_3{\cdot}2SiO_2$) and quartz ($SiO_2$) was found during the experiment. Amorphous halo pattern was a aluminosilicate gel generated by geopolymeric polycondensation and it was found that the halo pattern of aluminosilicate gel was preserved up to $800^{\circ}C$. The patterns of aluminosilicate gel disappeared from $1,000^{\circ}C$ and crystal phases like gehlenite, calcium silicate, calcium aluminum oxide, microcline was observed with the increase of exposure temperature.

본 연구에서는 Alumina 골재를 사용한 fly ash-blast furnace slag계 Geopolymer의 내열성 건축자재로서의 사용 가능성을 검토하기 위하여 고온조건에서의 열적 특성에 대하여 조사하였다. 모든 배합조건에서 Geopolymer 경화체의 표면 크랙은 $800^{\circ}C$까지는 관찰되지 않았으며, 이것은 열처리 전후 강도의 변화가 작은 것과 일치한다. 또한, $800^{\circ}C$까지 고로슬래그의 혼합비율이 60 wt%일 때 잔존압축강도가 가장 우수한 것으로 나타났다. Geopolymer 경화체의 주요 수화 생성물은 $20{\sim}35^{\circ}$(2theta) 범위의 비정질 halo 패턴과 원재료의 mullite($3Al_2O_3{\cdot}2SiO_2$)와 quartz($SiO_2$)가 확인되었다. 비정질 halo 패턴은 Geopolymer 축중합 반응에 의해서 생성된 aluminosilicate gel이며, $800^{\circ}C$까지는 aluminosilicate gel의 halo 패턴이 유지되고 있음을 알 수 있다. $1,000^{\circ}C$에서 aluminosilicate gel의 패턴은 사라지며 열처리온도의 증가와 함께 gehlenite, calcium silicate, calcium aluminum oxide, microcline와 같은 결정상이 관찰되었다.

Keywords

References

  1. A. Palomo, M.W. Grutzeck and M.T. Blanco, "Alkaliactivated fly ashes cement for the future", Cement & Con. Res. 29 (1999) 1323. https://doi.org/10.1016/S0008-8846(98)00243-9
  2. J. Temuujin and A. van Riessen, "Effect of fly ash preliminary calcination on the properties of geopolymer", J. Hazard. Mat. 164 (2008) 634.
  3. P. Duxson, J.L. Provis, G.C. Lukey and J.S.J. Van Deventer, "The role of inorganic polymer technology in the development of green concrete", Cem. Concr. Res. 37 (2007) 1590. https://doi.org/10.1016/j.cemconres.2007.08.018
  4. T.W. Cheng and J.P. Chiu, "Fire-resistant geopolymer produced by granulated blast furnace slag", Min. Eng. 16 (2003) 205. https://doi.org/10.1016/S0892-6875(03)00008-6
  5. V.F.F. Barbosa and K.J.D. MacKenzie, "Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate", Mat. Res. Bull. 38 (2003) 319. https://doi.org/10.1016/S0025-5408(02)01022-X
  6. K.T. Koh, G.S. Ryu and J.H. Lee, "Development of geopolymer mortar based on fly ash", J. Kor. Recy. Cons. Ins. 6 (2011) 119.
  7. R. Zhao and J.G. Sanjayan, "Geopolymer and portland cement concretes in simulated fire", Magazine of Concr. Res. 63 (2011) 163. https://doi.org/10.1680/macr.9.00110
  8. J.H. Kim, I.T. Nam, H. Park and K.N. Kim, "Thermal property of geopolymer ceramics based on fly ash-blast furnace slag", Kor. Mat. Res. 26 (2016) 521. https://doi.org/10.3740/MRSK.2016.26.10.521
  9. V.F.F. Barbosa and K.J.D. MacKenzie, "Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialalate", Mat. Res. Bull. 38 (2003) 319. https://doi.org/10.1016/S0025-5408(02)01022-X
  10. C.H. Chen, I.J. Chiou and K.S. Wang, "Sintering effect on cement bonded sewage sludge ash", Cement & Concr. Com. 28 (2006) 6.
  11. D. Panias, I.P. Giannopoulou and T. Perraki, "Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers", Colloid. Surfaces A: Physicochemical and Engineering Aspects 301 (2007) 246. https://doi.org/10.1016/j.colsurfa.2006.12.064
  12. J. Zhang, J.L. Provis, D. Feng and J.S.J. van Deventer, "Geopolymers for immobilization of $Cr^{6+},\;Cd^{2+}\;and\;Pb^{2+}$", J. Hazard. Mat. 157 (2008) 587. https://doi.org/10.1016/j.jhazmat.2008.01.053
  13. A.R. Lucia, P. Gerard, M. Etienne and E. Alain, "The use of thermal analysis in assessing the effect of temperature on a cement paste", Cement & Concr. Res. 35 (2005) 609. https://doi.org/10.1016/j.cemconres.2004.06.015
  14. S.G. Son and Y. D. Kim, "Effect of thermal behaviour and mechanical properties heat treatment on the geoploymer mortar", K. Soc. of Waste Man. 27 (2010) 709.
  15. B. Joseph, "Behavior of geopolymer concrete exposed to elevated temperatures", Ph.D. Thesis, Cochin University of Science and Technology, p. 90 (2015).
  16. G. Roviello, L. Ricciotti, C. Ferone, F. Colangelo and O. Tarallo, "Fire resistant melamine based organic-geopolymer hybrid composites", Cement & Concr. Com. 59 (2015) 89. https://doi.org/10.1016/j.cemconcomp.2015.03.007