DOI QR코드

DOI QR Code

Preparation of particle-size-controlled SiC powder for single-crystal growth

  • Jung, Eunjin (Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Myung Hyun (Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Yong Jin (Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Doo Jin (Department of Material Science and Engineering, Yonsei University) ;
  • Kang, Seung Min (Department of Advanced Materials Science and Engineering, Hanseo University) ;
  • Kim, Younghee (Korea Institute of Ceramic Engineering and Technology)
  • Received : 2016.12.05
  • Accepted : 2017.01.13
  • Published : 2017.02.28

Abstract

High-purity ${\beta}-SiC$ powders for SiC single-crystal growth were synthesized by direct carbonization. The use of high-purity raw materials to improve the quality of a SiC single crystal is important. To grow SiC single crystals by the PVT method, both the particle size and the packing density of the SiC powder are crucial factors that determine the sublimation rate. In this study, we tried to produce high-purity ${\beta}-SiC$ powder with large particle sizes and containing low silicon by introducing a milling step during the direct carbonization process. Controlled heating improved the purity of the ${\beta}-SiC$ powders to more than 99 % and increased the particle size to as much as ${\sim}100{\mu}m$. The ${\beta}-SiC$ powders were characterized by SEM, XRD, PSA, and chemical analysis to assess their purity. Then, we conducted single-crystal growth experiments, and the grown 4H-SiC crystals showed high structural perfection with a FWHM of about 25-48 arcsec.

Keywords

References

  1. V.D. Krstic, "Production of fine, high-purity beta silicon carbide powders", J. Am. Ceram. Soc. 75 (1992) 170. https://doi.org/10.1111/j.1151-2916.1992.tb05460.x
  2. M. Fukushima, Y. Zhou, Y.I. Yoshizawa and K. Hirao, "Water vapor corrosion behavior of porous silicon carbide membrane support", J. Eur. Ceram. Soc. 28 (2008) 1043. https://doi.org/10.1016/j.jeurceramsoc.2007.09.023
  3. G.R. Fisher and P. Barnes, "Towards a unified view of polytypism in silicon carbide", Philos. Mag. B 61 (1990) 217. https://doi.org/10.1080/13642819008205522
  4. J. Zhao, L.C. Stearns, M.P. Harmer, H.M. Chan and G.A. Miller, "Mechanical behavior of alumina silicon carbide nanocomposites", J. Am. Ceram. Soc. 76 (1993) 503. https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
  5. R.C. Glass, D. Henshall, V.F. Tsvetkov and C.H. Carter Jr. "Silicon carbide electronic materials and devices", MRS Bulletin 202 (1997) 149.
  6. Yu.M. Tairov and V.F. Tsvetkov, "Investigation of growth processes of ingots of silicon carbide single crystals", J. Crystal Growth 43 (1978) 209. https://doi.org/10.1016/0022-0248(78)90169-0
  7. J. Drowart and G. de Maria, "Thermodynamic study of SiC utilizing a mass spectrometer", J. Chem. Phys. 41 (1958) 1015.
  8. Yu.M. Tairov, "Growth of bulk SiC", Materials Science and Engineering B 29 (1995) 83. https://doi.org/10.1016/0921-5107(94)04048-9
  9. K. Koga, Y. Fujikawa, Y. Ueda and T. Yamaguchi, "Amorphous and crystalline silicon carbide IV", Springer Proc. Phys. 71 (1992) 96.
  10. L. Wang, X. Hu, X. Xu, S. Jiang, L. Ning and M. Jiang, "Synthesis of high purity sic powder for high-resistivity SiC single crystal growth", J. Mater. Sci. Technol. 23 (2007) 118.
  11. E.G. Acheson, "Production of articial crystalline carbonaceous materials", US Patent No. 492 (1893) 767.
  12. L.N. Satapathy, P.D. Ramesh, A. Dinesh and R. Rustum, "Microwave synthesis of phase-pure, fine silicon carbide powder", Mater. Res. Bull. 40 (2005) 1871. https://doi.org/10.1016/j.materresbull.2005.04.034
  13. G. Viera, S.N. Sharma, J.L. Ujar, R.Q. Zhang, J. Costa and E. Bertran, "Nanometric powder of stoichiometric silicon carbide produced in square-wave modulated RF glow discharges", Vacuum 52 (1999) 182.
  14. E.J. Jung, Y.J. Lee, S.R. Kim, W.T. Kwon, D.J. Choi and Y. Kim, "Purification and particle size control of ${\beta}$-SiC powder using thermocycling process", Adv. Appl. Ceram. 113 (2014) 352. https://doi.org/10.1179/1743676114Y.0000000171
  15. E. Jung, Y.J. Lee, S.R. Kim, W.T. Kwon, J.K. Kim, D.J. Choi and Y. Kim, "High-purity beta-SiC powder for the single-crystal growth of SiC", J. Ceram. Process. Res. 15 (2014) 447.
  16. J.G. Kim, E.J. Jung, Y. Kim, Y. Makarov and D.J. Choi, "Quality improvement of single crystal 4H SiC grown with a purified ${\beta}$-SiC powder source", Ceram. Int. 40 (2014) 3953. https://doi.org/10.1016/j.ceramint.2013.08.041
  17. J.G. Kim, S.J. Park, E. Jung, Y. Kim and D.J. Choi, "Mapping analysis of single crystal SiC polytypes grown from purified ${\beta}$-SiC powder", Met. Mater. Int. 20 (2014) 687. https://doi.org/10.1007/s12540-014-5013-y
  18. R. Pampuch, L. Stobierski, J. Lis and M. Raczka, "Solid combustion synthesis of ${\beta}$ SiC powders", Mater. Res. Bull. 22 (1987) 1225. https://doi.org/10.1016/0025-5408(87)90132-2
  19. R. Pampuch, L. Stobierski and J. Lis, "Synthesis of sinterable ${\beta}$-SiC powders by a solid combustion method", J. Am. Ceram. Soc. 72 (1989) 1434. https://doi.org/10.1111/j.1151-2916.1989.tb07667.x
  20. A. Taylor and D.S. Laidler, "The formation and crystal structure of silicon carbide", Brit. J. Appl. Phys. 1 (1950) 174. https://doi.org/10.1088/0508-3443/1/7/303
  21. I.Yu. Tishchenko, O.O. Ilchenko and P.O. Kuzema, "TGA-DSC-MS analysis of silicon carbide and of its carbon-silica precursor", Chem. Phys. Tech. Surf. 6 (2015) 216.