DOI QR코드

DOI QR Code

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis

퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석

  • Received : 2017.01.25
  • Accepted : 2017.02.25
  • Published : 2017.03.01

Abstract

This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.

본 논문에서는 변형률 응답 곡선의 형상을 정량적으로 분석하는 새로운 기법을 소개하였다. 변형률 응답 곡선은 응력 공간에서 단위 응력을 입력하였을 때의 발생한 변형률을 변형률 공간에 작성한 이미지이다. 변형률 응답 곡선의 형상 변화 특성을 퓨리에 기술자를 이용하여 분석하였으며, 탄소성 모델 기반으로 그 의미를 해석하였다. 전산해석결과 응력 경로가 항복면 내부에 머물러 탄성 변형만 존재할 경우, 퓨리에 기술자는 일정하게 그 값을 유지하였으나 응력 경로가 항복면에 도달하여 소성변형이 발생하는 순간 퓨리에 기술자는 변화하였다. 불교란 자연 시료와 재성형 시료에 대해 실시한 응력 경로 시험 결과, 자연 시료에 대해서만 응력 경로가 항복면에 도달하였을 때 명확한 변형률 응답 곡선의 형태 변화가 발견되었으며, 퓨리에 기술자 값도 명확하게 변화하였다. 퓨리에 기술자 중, 비대칭성과 관련 있는 퓨리에 기술자 값이 항복 및 점성토 구조변화의 지표로 활용할 수 있는 것을 확인하였다.

Keywords

References

  1. Bowman, E. T., Soga, K. and Drummond, W. (2001), Particle shape characterisation using fourier descriptor analysis, Geotechnique, Vol. 51, No. 6, pp. 545-554. https://doi.org/10.1680/geot.2001.51.6.545
  2. Cho, W. (2007), Recent stress effects on compressible Chicago glacial clay, Ph.D thesis, Northwestern University.
  3. Gudehus, G. and Masin, D. (2009), Graphical representation of constitutive equations. Geotechnique, Vol. 59, No. 2, pp. 147-151. https://doi.org/10.1680/geot.2007.00155
  4. Hundal, H. S., Rohani, S., Wood, H. C. and Pons, M. N. (1997), Particle shape characterization using image analysis and neural networks, Powder Technology, Vol. 91, No. 3, pp. 217-227. https://doi.org/10.1016/S0032-5910(96)03258-5
  5. Jung, Y. H. and Cho, W. (2010), Singular value decomposition of the compliance response matrix for the triaxial stress condition, Computers and Geotechnics, Vol. 37, No. 4, pp. 565-572. https://doi.org/10.1016/j.compgeo.2010.03.005
  6. Jung, Y. H., Cho, W. and Finno, R. J. (2007), Defining yield from bender element measurements in triaxial stress-probe experiment, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 7, pp. 841-849. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(841)
  7. Kim, T. and Finno, R. J. (2012), Anisotropy evolution and irrecoverable deformation in triaxial stress probes, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 138, No. 2, pp. 155-165. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000575
  8. Kim, T. and Jung, Y. H. (2015), Detecting structural collapse of structured natural clays using singular value decomposition of the strain response envelope, Soils and foundations, Vol. 55, No. 5, pp. 964-974.
  9. Masin, D., Tamagnini, C., Viggiani, G. and Costanzo, D. (2006), Directional response of a reconstituted fine-grained soil - Part II: Performance of different constitutive models, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, No. 13, pp. 1303-1336. https://doi.org/10.1002/nag.527
  10. Rosler, R., Schneider, H. A. and Schuberth, R. (1987), Relation between particle shape and profile fourier coefficients, Powder Technology, Vol. 49, No. 3, pp. 255-260. https://doi.org/10.1016/0032-5910(87)80134-1