DOI QR코드

DOI QR Code

The effect of divalent and trivalent cations on aggregation and surface hydrophobicity of selected microorganism

  • Alias, M. Anwar (Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Muda, Khalida (Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Affam, Augustine Chioma (Department of Civil Engineering, School of Engineering and Technology, University College of Technology Sarawak) ;
  • Aris, Azmi (Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia) ;
  • Hashim, Normala (Faculty of Civil Engineering, Universiti Teknologi Malaysia)
  • Received : 2016.05.19
  • Accepted : 2016.10.17
  • Published : 2017.03.31

Abstract

This study investigated the effect of various cations ($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$, $Mn^{2+}$, $Zn^{2+}$) on the autoaggregation (AAg) and surface hydrophobicity (SHb) of three different bacteria (Brevibacillus panacihumi strain (ZB1), Lysinibacillus fusiformis strain (ZB2) and Enterococcus faecalis strain (ZL)) using a 2-level factorial design. The AAg ratio was measured from the changes in the absorbance of the media. Results show that ZB2 had maximum AAg for the three bacteria investigated. A microscopic clustering of cells was observed when $Ca^{2+}$ was added to ZB2. The AAg was in the range of 62%, 58% and 34% for ZB2, ZB1 and ZL, respectively and correlated to the SHb. The aggregation and SHb of the microbial cells increased with increasing ionic strength due to the repulsive steric or overlap forces between the polymer covered surfaces. $Ca^{2+}$ demonstrated a more significant effect on aggregation and SHb of microbial cells due to an attractive binding force.

Keywords

References

  1. Chen F. Bacterial auto-aggregation and co-aggregation in activated sludge [thesis]. Clemson University, USA; 2007.
  2. Rahman MM, Kim WS, Kumura H, Shimazaki KI. Autoaggregation and surface hydrophobicity of Bifidobacteria. World J. Microb. Biotech. 2008;24:1593-1598. https://doi.org/10.1007/s11274-007-9650-x
  3. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. Adhesion and aggregation ability of probiotic strain lactobacillus acidophilus M92. J. Appl. Microbiol. 2003;94:981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  4. Nomura T, Narahara H, Tokumoto H, Konishi Y. The role of microbial surface properties and extracellular polymer in lactococcus lactis aggregation. Adv. Powder Technol. 2009;20: 537-541. https://doi.org/10.1016/j.apt.2009.07.003
  5. Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. Cell hydrophobicity is a triggering force of biogranulation. Enzym. Microb. Technol. 2004;34:371-379. https://doi.org/10.1016/j.enzmictec.2003.12.009
  6. Aslim B, Onal D, Beyatli Y. Factors influencing autoaggregation and aggregation of lactobacillus delbrueckii subsp. bulgaricus isolated from handmade yogurt. J. Food Protect. 2007;70:223-227. https://doi.org/10.4315/0362-028X-70.1.223
  7. Adav SS, Lee DJ. Intrageneric and intergeneric co-aggregation with acinetobacter calcoaceticus I6. J. Taiwan Inst. Chem. Eng. 2009;40:344-347. https://doi.org/10.1016/j.jtice.2009.02.003
  8. Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010;28:882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  9. Guo F, Zhang SH, Yu X, Wei B. Variations of both bacterial community and extracellular polymers: The inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge. Biores. Technol. 2011;102:6421-6428. https://doi.org/10.1016/j.biortech.2011.03.046
  10. Muda K, Aris A, Salim MR, et al. Aggregation and surface hydrophobicity of selected microorganism due to the effect of substrate, pH and temperature. Int. Biodeter. Biodegrad. 2014;93:202-209. https://doi.org/10.1016/j.ibiod.2014.05.023
  11. Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002;36:1653-1665. https://doi.org/10.1016/S0043-1354(01)00379-7
  12. Tay JH, Tay STL, Liu Y, Show KY, Ivanov V. Biogranulation technologies for wastewater treatment: Microbial granules. 1st ed. Elsevier Science; 2006.
  13. Di Iaconi C, Ramadori R, Lopez A, Passino R. Aerobic granular sludge systems: The new generation of wastewater treatment technologies. Ind. Eng. Chem. Res. 2007;46:6661-6665. https://doi.org/10.1021/ie061662l
  14. Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008a;26:411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
  15. Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules. Biotechnol. Adv. 2009;27:1061-1070. https://doi.org/10.1016/j.biotechadv.2009.05.020
  16. Sutherland IW. Exopolysaccharides in biofilms, flocs and related structures. Water Sci. Technol. 2001;43:77-86.
  17. Chen H, Zhou S, Li T. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ. Technol. 2010;31:1601-1612. https://doi.org/10.1080/09593330.2010.482146
  18. Wang ZW, Liu Y, Tay JH. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 2005:69:469-473. https://doi.org/10.1007/s00253-005-1991-5
  19. Wang Z, Liu L, Yao J, Cai W. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006;63:1728-1735. https://doi.org/10.1016/j.chemosphere.2005.09.018
  20. Zhang L, Feng X, Zhu N, Chen J. Role of extracellular protein in the formation and stability of aerobic granules. Enzym. Microb. Technol. 2007;41:551-557. https://doi.org/10.1016/j.enzmictec.2007.05.001
  21. Seviour T, Zhiguo Y, Loosdrecht MCMV, Lin Y. Aerobic sludge granulation: A tale of two polysaccharides? Water Res. 2012;46:4803-4813. https://doi.org/10.1016/j.watres.2012.06.018
  22. Wang S, Shi W, Yu S, Yi X, Yang X. Formation of aerobic granules by $Mg^{2+}$ and $Al^{3+}$ augmentation in sequencing batch airlift reactor at low temperature. Bioproc. Biosys. Eng. 2012;35: 1049-1055. https://doi.org/10.1007/s00449-012-0702-8
  23. Liu L, Gao DW, Zhang M, Fu Y. Comparison of $Ca^{2+}$ and $Mg^{2+}$ enhancing aerobic granulation in SBR. J. Hazard. Mater. 2010;181:382-387. https://doi.org/10.1016/j.jhazmat.2010.05.021
  24. Zheng X, Chen W, Zhu N, Wu D, Wang Y. Effect of Zn(Ii) on the characteristics of aerobic granules. J. Food Agric. Environ. 2011;9:497-500.
  25. Mahoney EM, Varangu LK, Cairns WL, Kosaric N, Murray RGE. The effect of calcium on microbial aggregation During UASB reactor start-up. Water Sci. Technol. 1987;19:249-260.
  26. Sondhi A, Guha S, Harendranath CS, Singh A. Effect of aluminum ($Al^{3+}$) on granulation in upflow anaerobic sludge blanket reactor treating low-strength synthetic wastewater. Water Environ. Res. 2010;82:715-724. https://doi.org/10.2175/106143010X12609736966603
  27. El-Mamouni R, Leduc R, Guiot SR. Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci. Technol. 1998;38:341-347. https://doi.org/10.2166/wst.1998.0824
  28. Uyanik S, Sallis PJ, Anderson GK. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: Process performance. Water Res. 2002;36:933-943. https://doi.org/10.1016/S0043-1354(01)00315-3
  29. Liu Z, Liu Y, Zhang A, Zhang C, Wang X. Study on the process of aerobic granule sludge rapid formation by using the poly aluminium chloride (PAC). Chem. Eng. J. 2014;250:319-325. https://doi.org/10.1016/j.cej.2014.04.025
  30. Jiang HL, Tay JH, Liu Y, Tay ST. $Ca^{2+}$ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett. 2003;25:95-99. https://doi.org/10.1023/A:1021967914544
  31. Pevere A, Guibaud G, Van Hullebusch ED, Boughzala W, Lens PNL. Effect of $Na^+$ and $Ca^{2+}$ on the aggregation properties of sieved anaerobic granular sludge. Colloid. Surface. A. 2007;306:142-149. https://doi.org/10.1016/j.colsurfa.2007.04.033
  32. De Kreuk MK, Van Loosdrecht MC. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 2004;49:9-17.
  33. Di Iaconi C, Ramadori R, Lopez A, Passino R. Aerobic granular sludge systems: The new generation of wastewater treatment technologies. Ind. Eng. Chem. Res. 2007;46:6661-6665. https://doi.org/10.1021/ie061662l
  34. Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004;22:533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  35. Muda K, Aris A, Salim MR, et al. Development of granular sludge for textile wastewater treatment. Water Res. 2010;44: 4341-4350. https://doi.org/10.1016/j.watres.2010.05.023
  36. Zheng X, Chen W, Zhu N, Wu D, Wang Y. Effect of Zn(Ii) on the characteristics of aerobic granules. J. Food Agric. Environ. 2011;9:497-500.
  37. Kerchove AJ, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile pseudomonas aeruginosa on alginate films. Langmuir 2008;24:3392-3399. https://doi.org/10.1021/la7036229
  38. Lamprecht C. UASB granulation enhancement by microbial inoculum selection and process induction. [thesis]. Stellenbosch: Univ. of Stellenbosch; 2009.
  39. Malik A, Sakamoto M, Hanazaki S, et al. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol. 2003;69:6056-6063. https://doi.org/10.1128/AEM.69.10.6056-6063.2003
  40. Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000;31:438-442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
  41. Nishiyama S, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F. Involvement of minor components associated with the fima fimbriae of porphyromonas gingivalis in adhesive functions. Microbiology 2007;153:1916-1925. https://doi.org/10.1099/mic.0.2006/005561-0
  42. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z. Biosorption and biodegradation of acid orange 7 by enterococcus faecalis strain ZL: Optimization by response surface methodological approach. Environ. Sci. Pollut. Res. Int. 2013;20:5056-5066. https://doi.org/10.1007/s11356-013-1476-5
  43. Kee TC, Bay HH, Lim CK, Muda K, Ibrahim Z. Development of bio-granules using selected mixed culture of decolorizing bacteria for the treatment of textile wastewater. Desalin. Water Treat. 2014;54:1-8.
  44. Bay HH, Lim CK, Kee TC, et al. Decolourisation of acid orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture. Environ. Sci. Pollut. Res. Int. 2014;21;3891-3906. https://doi.org/10.1007/s11356-013-2331-4
  45. Tezuka Y. Cation-dependent flocculation in a flavobacterium species predominant in activated sludge. Appl. Microbiol. 1969;17:222-226.
  46. Mckinney RE, Horwood MP. Fundamental approach to the activated sludge process: I. Floc-producing bacteria. Sew. Ind. Wast. 1952;24:117-123.
  47. Sobeck DC, Higgins MJ. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002;36: 527-538. https://doi.org/10.1016/S0043-1354(01)00254-8
  48. Li XM, Liu QQ, Yang Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by $Mg^{2+}$ augmentation. Biores. Technol. 2009;100:64-67. https://doi.org/10.1016/j.biortech.2008.06.015
  49. Nguyen TP, Hilal N, Hankins NP, Novak JT. The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge. Desalination 2008;227:94-102. https://doi.org/10.1016/j.desal.2007.05.038
  50. Mara D, Horan NJ. Handbook of water and wastewater microbiology. 1st ed. Elsevier Science; 2003.
  51. Huang L, Yang T, Wang W, Zhang B, Sun Y. Effect of $Mn^{2+}$ augmentation on reinforcing aerobic sludge granulation in a sequencing batch reactor. Environ. Biotech. 2012;93:2615-2623. https://doi.org/10.1007/s00253-011-3555-1
  52. Lin CY, Chen CC. Toxicity-resistance of sludge biogranules to heavy metals. Biotechnol. Lett. 1997;19:557-560.
  53. Higgins MJ and Novak JT. The effects of cations on the settling and dewatering of activated sludge: Laboratory experience. Water Environ. Res. 1997;69:215-224. https://doi.org/10.2175/106143097X125371
  54. Foster PL. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 2007;42:373-397. https://doi.org/10.1080/10409230701648494
  55. Li H, Wen Y, Cao A, Huang J, Zhou Q, Somasundaran P. The influence of additives ($Ca^{2+}$, $Al^{3+}$, and $Fe^{3+}$) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of Activated sludge and their flocculation mechanisms. Biores. Technol. 2012;114:188-194. https://doi.org/10.1016/j.biortech.2012.03.043
  56. Adav SS, Lee DJ, Tay JH. Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008b;42: 1644-1650. https://doi.org/10.1016/j.watres.2007.10.013
  57. Park C, Muller CD, Abu-Orf MM, Novak JT. The effect of wastewater cations on activated sludge characteristics: Effects of aluminium and iron in floc. Water Environ. Res. 2006;78:31-40. https://doi.org/10.2175/106143005X84495
  58. Yu HQ, Fang HHP, Tay JH. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 2001;44:31-36. https://doi.org/10.1016/S0045-6535(00)00381-7
  59. Perez M, Romero LI, Sales D. Comparative performance of high rate anaerobic thermophilic technologies treating industrial wastewater. Water Res. 1998;32:559-564. https://doi.org/10.1016/S0043-1354(97)00315-1
  60. Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol. 1997;63:1168-1170.

Cited by

  1. Study on the effect of a static magnetic field in enhancing initial state of biogranulation pp.1605-3974, 2018, https://doi.org/10.2166/aqua.2018.128
  2. Enhanced aerobic sludge granulation by applying carbon fibers as nucleating skeletons vol.373, pp.None, 2017, https://doi.org/10.1016/j.cej.2019.05.126
  3. Enhanced biodegradation of chlorobenzene via combined Fe3+ and Zn2+ based on rhamnolipid solubilisation vol.103, pp.None, 2017, https://doi.org/10.1016/j.jes.2020.10.002
  4. The effectiveness of divalent cation addition for highly saline activated sludge cultures: Influence of monovalent/divalent ratio and specific cations vol.274, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2021.129864
  5. Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation Period with Low-Strength and Low C/N Ratio Wastewater vol.9, pp.8, 2017, https://doi.org/10.3390/pr9081290