DOI QR코드

DOI QR Code

Assessing the hydrogen peroxide effect along with sodium hypochlorite against marine blue mussels aimed at antifouling usage

  • Haque, Md. Niamul (Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University) ;
  • Kwon, Sunghyun (Department of Marine Environmental Engineering, College of Marine Science, Engineering Research Institute (ERI), Gyeongsang National University)
  • Received : 2016.03.14
  • Accepted : 2016.11.03
  • Published : 2017.03.31

Abstract

Chlorination has been the most common antifouling method, but alternatives are under searching. In this article, we report how the hydrogen peroxide could enhance the effect of chlorination to prevent fouling by inhibiting larvae settlement and abatement of mussel colonization or by extinct of them; through marine mussel Mytilus edulis. The addition of hydrogen peroxide shows synergic effect on the veliger larvae (up to 19 folds) and effectively reduces required time of mussel mortality by 8-22%. For resolution of micro- and macro-fouling caused by the marine mussel, as well as diminishing of time and conventional chlorine dose could be important factor in favour of environment and economics.

Keywords

References

  1. Murthy PS, Veeramani P, Ershath MIM, Venugopalan VP. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant. Power Plant Chem. 2011;13: 314-319.
  2. Rao TS, Kora AJ, Chandramohan P, Panigrahi BS, Narasimhan SV. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor. Biofouling 2009;25:581-591. https://doi.org/10.1080/08927010903016543
  3. Sahu G, Achary MS, Satpathy KK, Mohanty AK, Biswas S, Prasad MVR. Studies on the settlement and succession of macrofouling organisms in the Kalpakkam coastal waters, southeast coast of India. Indian J. Geo-Mar. Sci. 2011;40:747-761.
  4. Kovalak WP, Longton GD, Smithee RD. Zebra mussels: Biology, impacts, and control. In: Nalepa TF, Schloesser DW, eds. Boca Raton, Florida: Lewis Publishers; 1993. p. 359-380.
  5. Cloete TE, Jacobs L, Brozel VS. The chemical control of biofouling in industrial water systems. Biodegradation 1998;9:23-37. https://doi.org/10.1023/A:1008216209206
  6. Rajagopal S, Van der Velde G. Operational and environmental consequences of large industrial cooling water systems. In: Rajagopal S, Jenner HA, Venugopalan VP eds. New York: Springer; 2012. p. 127-162.
  7. Jenner HA, Janssen-Mommen JPM. Monitoring and control of Dreissena polymorpha and other macrofouling bivalves in the Netherlands. In: Nalepa TF, Schloesser DW, eds. Boca Raton, Florida: Lewis Publishers; 1993. p. 537-554.
  8. Bott TR. Biofouling control in cooling water. Int. J. Chem. Eng. 2009;2009:619873.
  9. Rajamohan R, Vinitha E, Venugopal VP, Narasimhan SV. Chlorination byproducts and their discharge from the cooling water system of a coastal electric plant. Curr. Sci. 2007;93:1608-1612.
  10. Allonier AS, Khalanski M, Camel V, Bermond A. Characterization of chlorination by-products in cooling effluents of coastal nuclear power stations. Mar. Poll. Bull. 1999;7:1232-1241.
  11. Almeida JR, Vasconcelos V. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol. Adv. 2015;33:343-357. https://doi.org/10.1016/j.biotechadv.2015.01.013
  12. Wong YH, Wang H, Ravasi T, Qian PY. Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 2012;7:e33323. https://doi.org/10.1371/journal.pone.0033323
  13. Coyne KJ, Qin XX, Waite JH. Extensible collagen in mussel byssus: A natural block copolymer. Science 1997;277: 1830-1832. https://doi.org/10.1126/science.277.5333.1830
  14. Coyne KJ, Waite JH. In search of molecular dovetails in mussel byssus: From the threads to the stem. J. Exp. Biol. 2000;203: 1425-1431.
  15. Papov VV, Diamond TV, Biemann K, Waite JH. Hydroxyargininecontaining polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J. Biol. Chem. 1995;270:2018392.
  16. Waite JH, Qin XX. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 2001;40:2887-2893. https://doi.org/10.1021/bi002718x
  17. Gantayet A, Ohana L, Sone ED. Byssal proteins of the freshwater zebra mussel, Dreissena polymorpha. Biofouling 2013;29:77-85. https://doi.org/10.1080/08927014.2012.746672
  18. Verweer A, Vinex M, Degrear S. The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. J. Exp. Mar. Biol. Ecol. 2007;348:111-120. https://doi.org/10.1016/j.jembe.2007.04.011
  19. Santos LH, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MC. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010;175:45-95. https://doi.org/10.1016/j.jhazmat.2009.10.100
  20. Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003;142: 185-194. https://doi.org/10.1016/S0378-4274(03)00068-7
  21. Flaherty CM, Dodson SI. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 2005;61:200-207. https://doi.org/10.1016/j.chemosphere.2005.02.016
  22. Nalepa TF, Schloesser DW. Zebra mussels: Biology, impacts and control. Boca Raton, Florida: Lewis Publishers; 1992. p. 621-641.
  23. Rajagopal S, Nair KVK, Van der Velde G, Jenner HA. Response of mussel Brachidontes striatulus to chlorination: An experimental study. Aquat. Toxicol. 1997;39:135-149. https://doi.org/10.1016/S0166-445X(97)00021-0
  24. White GC. Handbook of chlorination and alternative disinfectants. New York: Wiley; 1999.
  25. Masilamonia G, Jesudoss KS, Nandakumar K, Satapathy KK, Azariah J, Nair KVK. Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Mar. Environ. Res. 2002;53:65-76. https://doi.org/10.1016/S0141-1136(01)00110-6
  26. Van Benschoten JE, Jensen JN, Harrington DK, DeGirolamo D. Zebra mussel mortality with chlorine. J. Am. water works Ass. 1995;5:101-108.
  27. Zar JH. Bio-statistical Analysis. Englewood Cliffs, New Jersey: Prentice-Hall; 1984. p. 718.
  28. Chen L, Li X, Zhang J, et al. Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine. Environ. Sci. Technol. 2015;49:10373-10379. https://doi.org/10.1021/acs.est.5b00483
  29. Tomat R, Rigo A, Salmaso R. Kinetic study on the reaction between $O_2$ and hydroxylamine. J. Electroanal. Chem. Interfacial Electrochem. 1975;59:255-260. https://doi.org/10.1016/S0022-0728(75)80180-X
  30. Storz G, Tartaglia LA, Farr SB, Ames BN. Bacterial defenses' against oxidative stress. Trends Genet 1990;6:363-368. https://doi.org/10.1016/0168-9525(90)90278-E
  31. Mouabad AMA, Fdil A, Maarouf A, Pihan JC. Pumping behavior and filtration rate of the freshwater mussel Potomida littoralis as a tool for rapid detection of water contamination. Aqua Ecol. 2001;35:51-60. https://doi.org/10.1023/A:1011499325045
  32. Muller F. The nature and mechanism of superoxide production by the electro transport chain; its relevance to aging. J. Am. Aging Ass. 2000;23:227-253.
  33. McCord JM, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969;244:6049-6055.
  34. Cerenius L, Soderhall K. Variable immune molecules in invertebrates. J. Exp. Biol. 2013;216:4313-4319. https://doi.org/10.1242/jeb.085191
  35. Thompson IS, Richardson CA. The response of the common cockle, Cerastoderma edule, to simulated chlorination procedures. Biofouling 1993;7:299-312. https://doi.org/10.1080/08927019309386261
  36. Cleuvers M. Initial risk assessment for three ${\beta}$-blockers found in the aquatic environment. Chemosphere 2005;59:199-205. https://doi.org/10.1016/j.chemosphere.2004.11.090
  37. Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. Environ. Sci. Technol. 2012;46:2564-2573. https://doi.org/10.1021/es2034125
  38. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997;272:20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  39. Tremolada P, Finizio A, Villa S, Gaggi C, Vighi M. Quantitative inter-specific chemical activity relationships of pesticides in the aquatic environment. Aquat. Toxicol. 2004;67:87-103. https://doi.org/10.1016/j.aquatox.2003.12.003
  40. Cronin MTD, Dearden JC. QSAR in toxicology. 2. Prediction of acute mammalian toxicity and interspecies correlations. Mol. Inform. 1995;14:117-120.
  41. Zhang XJ, Qin HW, Su LM, et al. Interspecies correlations of toxicity to eight aquatic organisms: Theoretical considerations. Sci. Total Environ. 2010;408:4549-4555. https://doi.org/10.1016/j.scitotenv.2010.07.022
  42. Rajagopal S, Van der Velde G, Van der Gaag M, Jenner HA. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003;37: 329-338. https://doi.org/10.1016/S0043-1354(02)00270-1
  43. Kirkwood TB, Austad SN. Why do we age? Nature 2000;408: 233-238. https://doi.org/10.1038/35041682
  44. Buettemer W, Abele D, Costantini D. From bivalves to birds: Oxidative stress and longevity. Funct. Ecol. 2010;24:971-983. https://doi.org/10.1111/j.1365-2435.2010.01740.x
  45. Jenner HA. Chlorine minimization in macrofouling control in The Netherlands. In: Jolly RL, Bull RJ, Davies WP, Katz S, Roberts MH, Jacobs VA, eds. Water chlorination: Chemistry, environmental impact and health effects. Vol. 5. Michigan: Lewis Publishers; 1985. p. 1425-1433.
  46. Jones HD, Richards OG, Southern TA. Gill dimensions, water pumping rate and body size in the mussel Mytilus eduulis L. J. Exp. Mar. Biol. Ecol. 1992;155:213-237. https://doi.org/10.1016/0022-0981(92)90064-H
  47. Enrique GO, Julian B, Elena N, Miriam H, Lewis LV, Luis G. Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris. Sci. Total Environ. 2016;540:260-266. https://doi.org/10.1016/j.scitotenv.2015.06.081
  48. Opresko DM. Review of open literature on effects of chlorine on aquatic organisms. Report No. EPRI EA-1491. Palo Alto, CA: Electric Power Research Institute; 1980. p. 1-29.
  49. Martin ID, Mackie GL, Baker MA. Control of the biofouling mollusk, Dreissena polymorpha (Bivalvia: Dreissenidae), with sodium hypochlorite and with polyquaternary ammonia and benzothiazole compounds. Arch. Environ. Contam. Toxicol. 1993;24:381-388. https://doi.org/10.1007/BF01128738

Cited by

  1. Multimarker study of the effects of antifouling biocide on benthic organisms: results using Perna viridis as candidate species pp.1614-7499, 2018, https://doi.org/10.1007/s11356-017-9607-z