DOI QR코드

DOI QR Code

Production of Human Interferon β by Recombinant E. coli Using the Codon Optimized Gene

코돈 최적화된 유전자를 이용한 재조합 대장균으로부터 인간 인터페론 베타 발현

  • Kim, Jong-Seok (Department of Bioengineering and Technology, Kangwon National University) ;
  • Jang, Seung-Won (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University) ;
  • Chang, Young-Jun (Hankook Korus Co., Ltd.) ;
  • Jung, Hyung-Moo (Hankook Korus Co., Ltd.) ;
  • Han, Sang-In (Hankook Korus Co., Ltd.) ;
  • Hong, Eock-Kee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • Received : 2016.11.29
  • Accepted : 2017.01.12
  • Published : 2017.03.31

Abstract

The multiple sclerosis caused by multiple inflammatory disease or immune system disorder, is usually treated by interferon ${\beta}$ through adjusting the abnormal immune reactions. For high production of human interferon ${\beta}$ using recombinant E. coli, codon optimized and wild type genes were synthesized. When pET-15b or pET-21a vector was used as an expression vector with each gene, there was no target protein expression. When pQE30 vector was used as an expression vector, human interferon ${\beta}$ was expressed by recombinant E. coli XL1-blue and E. coli JM109. Using the codon optimized gene, the expression of human interferon ${\beta}$ was slightly increased as compared to that from wild type gene. However, most of expressed human interferon ${\beta}$ was insoluble form.

Keywords

References

  1. Lee, G. W. (2005) Textbook of Neurology. pp. 369-370. Panmuneducation, Seoul, Korea.
  2. Latimer-Cheung, A. E., K. A. M. Ginis, A. L. Hicks, R. W. Motl, L. A. Pilutti, M. Duggan, G. Wheeler, R. Persad, and K. M. Smith (2013) Development of evidence-informed physical activity guidelines for adults with multiple sclerosis. Arch. Phys. Med. Rehabil. 94: 1829-1836. https://doi.org/10.1016/j.apmr.2013.05.015
  3. Goodin, D., E. Frohman, G. Garmany, J. Halper, W. Likosky, and F. Lublin (2002) Disease modifying therapies in multiple sclerosis. Neurology 58: 169-178. https://doi.org/10.1212/WNL.58.2.169
  4. Craig, J., C. Young, M. Ennis, G. Baker, and M. Boggild (2003) A randomised controlled trial comparing rehabilitation against standard therapy in multiple sclerosis patients receiving intravenous steroid treatment. J. Neurol. Neurosurg. Psychiatry 74: 1225-1230. https://doi.org/10.1136/jnnp.74.9.1225
  5. Troiano, R., S. D. Cook, and P. C. Dowling (1987) Steroid therapy in multiple sclerosis: Point of view. Archives of Neurology 44: 803-807. https://doi.org/10.1001/archneur.1987.00520200007008
  6. Paty, D. W., D. K. B. Li, the UBC MS/MRI Study Group, and the IFNB Multiple sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662-667. https://doi.org/10.1212/WNL.43.4.662
  7. van Beers, M. M., W. Jiskoot, and H. Schellekens (2010) On the role of aggregates in the immunogenicity of recombinant human interferon beta in patients with multiple sclerosis. J. Interferon Cytokine Res. 30: 767-775. https://doi.org/10.1089/jir.2010.0086
  8. Severa, M., F. Rizzo, E. Giacomini, M. Salvetti, and E. M. Coccia (2015) IFN-${\beta}$ and multiple sclerosis: Cross-talking of immune cells and integration of immunoregulatory networks. Cytokine & Growth Factor Rev. 26: 229-239. https://doi.org/10.1016/j.cytogfr.2014.11.005
  9. Bertolotto, A., L. Granieri, F. Marnetto, P. Valentino, A. Sala, M. Capobianco, S. Malucchi, A. Di Sapio, M. Malentacchi, and M. Matta (2015) Biological monitoring of IFN-${\beta}$ therapy in multiple sclerosis. Cytokine Growth Factor Rev. 26: 241-248. https://doi.org/10.1016/j.cytogfr.2014.12.002
  10. Ghane, M., B. Yakhchali, and M. Khodabandeh (2008) Over Expression of Biologically Active Interferon Beta Using Synthetic Gene in E. coli. Iran J. Sci. Technol. Trans. A Sci. 19: 203-209.
  11. Kusumawati, A., A. Santoso, and M. Radji (2013) Soluble Expression of Recombinant Human Interferon Alpha 2a Fusion Protein in Escherichia coli. Int. J. Pharm. Healthc. 3: 42-49.
  12. Gross, G., C. Mielke, I. Hollatz, H. Blocker, and R. Frank (1990) RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-beta genes in Escherichia coli. J. Biol. Chem. 265: 17627-17636.
  13. van Beers, M. M., M. Sauerborn, F. Gilli, V. Brinks, H. Schellekens, and W. Jiskoot (2010) Aggregated recombinant human interferon beta induces antibodies but no memory in immune-tolerant transgenic mice. Pharm. Res. 27: 1812-1824. https://doi.org/10.1007/s11095-010-0172-0
  14. Newsome, S., S. Guo, A. Altincatal, I. Proskorovsky, E. Kinter, G. Phillips, X. You, and G. Sabatella (2015) Impact of peginterferon beta-1a and disease factors on quality of life in multiple sclerosis. Mult. Scler. Relat. Disord. 4: 350-357. https://doi.org/10.1016/j.msard.2015.06.004
  15. Lin, L. S., M. G. Kunitani, and M. S. Hora (2002) Interferon-${\beta}$-1b (Betaseron(R)): A model for hydrophobic therapeutic proteins. pp. 275-301. In: Formulation, characterization, and stability of protein drugs: Case histories. Springer, US.
  16. Basu, A., K. Yang, M. Wang, S. Liu, R. Chintala, T. Palm, H. Zhao, P. Peng, D. Wu, ans Z. Zhang (2006) Structure-function engineering of interferon-${\beta}$-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem. 17: 618-630. https://doi.org/10.1021/bc050322y
  17. Fiers, W., E. Remaut, R. Devos, H. Cheroutre, R. Contreras, D. Gheysen, W. Degrave, P. Stanssens, J. Tavernier, and Y. Taya (1982) The Human Fibroblast and Human Immune Interferon Genes and their Expression in Homologous and Heterologous Cells [and Discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences, 299: 29-38. https://doi.org/10.1098/rstb.1982.0103
  18. Naz, F., M. Asad, P. Malhotra, A. Islam, F. Ahmad, and M. I. Hassan (2014) Cloning, expression, purification and refolding of microtubule affinity-regulating kinase 4 expressed in Escherichia coli. Appl. Biochem. Biotechnol. 172: 2838-2848. https://doi.org/10.1007/s12010-014-0733-5
  19. Guzzo, C. M. and D. C. Yang (2007) Systematic analysis of fusion and affinity tags using human aspartyl-tRNA synthetase expressed in E. coli. Protein Expr. Purif. 54: 166-175. https://doi.org/10.1016/j.pep.2007.03.001
  20. Maldonado, L. M. P., V. E. B. Hernandez, E. M. Rivero, A. P. B. de la Rosa, J. L. F. Flores, L. G. O. Acevedo, and A. D. L. Rodriguez (2007) Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: The case of human interferon beta. Biomol. Eng. 24: 217-222. https://doi.org/10.1016/j.bioeng.2006.10.001

Cited by

  1. 코돈 최적화 및 샤페론 공발현을 통한 활성 형태의 재조합 인간 상피세포성장인자의 발현 vol.21, pp.9, 2017, https://doi.org/10.5762/kais.2020.21.9.559