DOI QR코드

DOI QR Code

Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation

고온동작소자의 패키징을 위한 천이액상확산접합 기술

  • Received : 2017.02.27
  • Accepted : 2017.03.14
  • Published : 2017.03.31

Abstract

Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

Keywords

References

  1. J. Millan, "A Review of WBG Power Semiconductor Devices", 2012 International semiconductor Conference (CAS), 57 (2012).
  2. I. W. Suh, H. S. Jung, Y. H. Lee and S. H. Choa, "Heat Disipation Technology of IGBT Module Package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  3. S. S. Kim "Trend of Technical Development of Power Device and its Evaluation", 2016 MPC conference, 149 (2016).
  4. T. Hu, H. Chen and M. Li, "Die attach materials with high remelting temperatures created by bonding Cu/Sn microparticles at lower temperatures", Materials and Design, 108, 383 (2016). https://doi.org/10.1016/j.matdes.2016.06.099
  5. H. Greve, S. A. Moeini and F. P. McCluskey, "Reliability of paste based transient liquid phase sintered interconnects", 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, 1314 (2014).
  6. H. S. Chin, K. Y. Cheong and A. B. Ismail, "A Review on Die Attach Materials for SiC-Based High-Temperature Power Device", Metallurgical and Materials Transactions B, 41(4), 824 (2010). https://doi.org/10.1007/s11663-010-9365-5
  7. Y. Takaku, I. Ohnuma, Y. Yamada, Y. Yagi, Y. Nishibe, Y. Sutou, R. Kainuma and K. Ishida, "Bi-Base Composite Solders for Mounting Power Semiconductor Devices", Journal of Japan Institute of Electronics Packaging 11(2), 141 (2008). https://doi.org/10.5104/jiep.11.141
  8. Q. Jiang, S. Mukherjee, A. Dasgupta, D. Shaddock and L. Yin, "Mechanical constitutive properties of a bi-rich high temperature solder alloy", 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, 1236 (2016).
  9. K. S. Kao, S. C. Chung, C. W. Fan, J. Y. Chang and T. C. Chang, "Utilization of Zn alloy for the manufacture of automotive power device modules", Proc. 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, 546 (2015).
  10. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma and K. Ishida, "Pb-Free High Temperature Solder Joints for Power Semiconductor Devices", Transactions of The Japan Institute of Electronics Packaging, 2(1), 79 (2009). https://doi.org/10.5104/jiepeng.2.79
  11. R. H. Roh, H. Nishikawa and J. P. Jung, A Review of Ag Paste Bonding for Automotive Power Device Packaging", J. Microelectron. Packag. Soc., 22(4), 15 (2015). https://doi.org/10.6117/kmeps.2015.22.4.015
  12. K. Suganuma and K. Kim, "Sn-Zn low temperature solder", J. Mater. Sci. Mater. Electron. 18, 121 (2006). https://doi.org/10.1007/s10854-006-9018-2
  13. Z. Mei and J. W. Morris, "Characterization of eutectic Sn-Bi solder joints", J. Electron. Mater. 21 599 (1992). https://doi.org/10.1007/BF02655427
  14. H. Chin, K. Cheong and A. Ismail, "A Review on Die Attach Materials for SiC-Based High-Temperature Power Device", Metallurgical and Materials Transactions B, 41(4), 824 (2010). https://doi.org/10.1007/s11663-010-9365-5
  15. S. W. Yoon, M. D. Glover and K. Shiozaki, "Nickel-Tin Transient Liquid Phase Bonding Toward High-Temperature Operational Power Electronics in Electrified Vehicles", IEEE Transactions on Power Electronics, 28(5), 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211
  16. J. P. Jung and C. S. Kang, "Liquid phase diffusion bonding of Rene80 using pure boron", Material Transactions, 37(5), 1008 (1996). https://doi.org/10.2320/matertrans1989.37.1008
  17. J. P. Jung and C. S. Kang, "Transient Liquid Phase process in Ni-B joining", Material Transactions, 38(10), 886 (1997). https://doi.org/10.2320/matertrans1989.38.886
  18. J. P. Jung, C. D. Lee and C. S. Kang, "A study on the Melting Induced Diffusion Bonding of 304 stainless steel", J. of the Korean Inst. of Met. & Mater., 31(3), 323 (1993).
  19. J. P. Jung and C. S. Kang, "Liquid Metal Formation on Ni/ B/Ni Diffusion Bonded Joint-Liquid Phase Diffusion Bonding Using B as an Insert Material", J. of the Korean Inst. of Met. & Mater., 33(10), 1302 (1995).
  20. J. P. Jung and C. S. Kang, "A Study on the Width of Liquid Layer of Ni/B/Ni Diffusion Bonding System", The Korean Welding and Joining Soc., 13(4), 147 (1995).
  21. M. J. Kim, Y. Zhou and J.P. Jung, "Reduced temperature soldering of capacitors using Sn-Bi plated Sn-3.5%Ag", Soldering & Surface Mount Technology, 19, 3 (2007).
  22. J. S. Lee, W. Bang, J. P. Jung and K. H. Oh, "Microstructure and Strength of Sn-Bi Coated Sn-3.5 mass%Ag Solder alloy", Material Transactions, 45(3), 783 (2004). https://doi.org/10.2320/matertrans.45.783
  23. J. S Lee, W. H Bang, J. P Jung and K. H Oh, "Application of TLP (Transient liquid phase) bonding method to the high Tm lead free solder", Materials Science Forum, 475(479), 1869 (2005).
  24. O. G. Cook and C. D. Sorensen, "Overview of transient liquid phase and partial transient liquid phase bonding", Journal of Materials Science, 46(16), 5305 (2011). https://doi.org/10.1007/s10853-011-5561-1
  25. K. E. Aasmundtveit, T. A. Tollefsen, T. T. Luu, A. Duan, K. Wang and N. Hoivik, "Solid-Liquid Interdiffusion (SLID) bonding - Intermetallic bonding for high temperature applications", 2013 Eurpoean Microelectronics Packaging Conference (EMPC), Grenoble, 1 (2013).
  26. A. S. Khaja, C. Kaestle, A. Reinhardt and J. Franke, "Optimized thin-film diffusion soldering for power-electronics production", Proceedings of the 36th International Spring Seminar on Electronics Technology, Alba Iulia, 11 (2013).
  27. B. Gollas, J. H. Albering, K. Schmut, V. Pointner, R. Herber and J. Etzkorn, "Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering", Intermetallics, 16, 962 (2008). https://doi.org/10.1016/j.intermet.2008.04.014
  28. H. Greve, L. Y. Chen, I. Fox and F. P. McCluskey, "Transient liquid phase sintered attach for power electronics", 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, NV, 435 (2013).
  29. J. Strogies and K. Wilke, "Universal high-temperature suitable joint adapting diffusion soldering", Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, 1 (2014).
  30. T. A. Tollefsen, A. Larsson, O. Lovvik and K. Aasmundtveit, "Au-Sn SLID Bonding-Properties and Possibilities", Metallurgical and Materials Transactions B, 43(2), 397 (2012). https://doi.org/10.1007/s11663-011-9609-z
  31. C. C. Lee, C. Y. Wang and G. Matijasevic, "Advances in Bonding Technology for Electronic Packaging", J. Electron. Packag., 115(2), 201 (1993). https://doi.org/10.1115/1.2909318
  32. J. P. Jung and C. S. Kang, "Mechanical Property of Liquid Phase Diffusion Bonded Joint of Rene80 / B / Rene80", The Korean Welding and Joining Soc., 13(3), 125 (1995).
  33. F. Lang, H. Yamaguchi, H. Nakagawa and H. Sato, "High temperature resistant joint technology for SiC power devices using transient liquid phase sintering process", Proc. 13th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT), Guilin, 157 (2012).
  34. C. Ehrhardt, M. Hutter, H. Oppermann and K. D. Lang, "A lead free joining technology for high temperature interconnects using Transient Liquid Phase Soldering (TLPS)", Proc. 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, 1321, IEEE (2014).
  35. A. Lis and C. Leinenbach, "Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni-)Sn Interlayer Combinations" The Minerals, Metals & Materials Soc., 44(11), 4576 (2015).
  36. N. S. Bosco and F. W. Zok, "Strength of joints produced by transient liquid phase bonding in the Cu-Sn system", Acta Materialia 53, 2019 (2015).
  37. A. Torleif, A. Tollefsen, A. Larsson, O. Lovvik and K. Aasmundtveit, "Au-Sn SLID Bonding-Properties and Possibilities", Metallurgical and Materials Transactions B, 43(2), 397 (2012). https://doi.org/10.1007/s11663-011-9609-z
  38. N. S. Nobeen, R. Imade, B. Lee, E. Phua, C. Wong and C. Gan, "Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications", Proc. 15th Electronics Packaging Technology Conference (EPTC 2013), Singapore, 647, IEEE (2013).
  39. G. Humpston, D. M Jacobson and S. P. S. Sangha, "Diffusion soldering for electronics manufacturing", Endeavour, 18(2), 55 (1994). https://doi.org/10.1016/0160-9327(94)90063-9
  40. H. Chin, K. Cheong and A. Isnauk, "A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices", Metallurgical & Materials Transactions B, 41B, 824 (2010).
  41. A. Bajwa and J. Wilde, "Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices", Microelectronics Reliability, 60, 116 (2016). https://doi.org/10.1016/j.microrel.2016.02.016
  42. H. Y. Zhao, J. H. Liu, Z. L. Li, Y. X. Zhao, H. W. Niu, X. G. Song and H. J. Dong, "Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process", Materials Letters, 186, 283 (2017). https://doi.org/10.1016/j.matlet.2016.10.017
  43. B. Liu, Y. Tian, J. Feng and C. Wang, "Enhanced shear strength of Cu-Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process", Journal of materials science, 52(4), 1943 (2017). https://doi.org/10.1007/s10853-016-0483-6
  44. J. H. Liu, H. Y. Zhao Z. L. Li, X. G. Song, H. J. Dong Y. X. Zhao and J. C. Feng, "Study on the microstructure and mechanical properties of Cu-Sn intermetallic joints rapidly formed by ultrasonic-assisted transient liquid phase soldering", Journal of Alloys and Compounds, 692, 552 (2017). https://doi.org/10.1016/j.jallcom.2016.08.263
  45. C. Honrao, T. C. Huang, M. Kobayashi, V. Smet, P. M. Raj, and R. Tummala, "Accelerated SLID bonding using thin multi-layer copper-solder stack for fine-pitch interconnections", Proc. 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, 1160, IEEE (2014).
  46. W. Zhang and W. Ruythooren, "Study of the Au/In Reaction for Transient Liquid-Phase Bonding and 3D Chip Stacking", J. Electron. Mater., 37(8), 1095 (2008). https://doi.org/10.1007/s11664-008-0487-3
  47. Y. M. Liu and T. H. Chuang, "Interfacial Reactions between Liquid Indium and Au-Deposited Substrates" J. Electron. Mater., 29(4), 405 (2000). https://doi.org/10.1007/s11664-000-0152-y
  48. J. Bjontegaard, L. Buene, T. Finstad, O. Lonsjo and T. Olsen, "Low Temperature Interdiffusion in Au/In Thin Film Couples", Thin Solid Films, 101(3), 253 (1983). https://doi.org/10.1016/0040-6090(83)90252-3
  49. V. I. Dybkov, "Growth Kinetics of Chemical Compound Layers", 1st ed. Cambridge International Science Publishing, Cambridge, England, 135 (1998).
  50. A. Bajwa and J. Wilde, "Reliability modeling of SnAg transient liquid phase die-bonds for high-power SiC devices", Microelectronics Reliability, 60, 116 (2016). https://doi.org/10.1016/j.microrel.2016.02.016

Cited by

  1. 전력반도체 접합용 천이액상확산접합 기술 vol.25, pp.4, 2017, https://doi.org/10.6117/kmeps.2018.25.4.009
  2. Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술 vol.27, pp.1, 2017, https://doi.org/10.6117/kmeps.2020.27.1.001
  3. Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications vol.11, pp.2, 2021, https://doi.org/10.3390/met11020329
  4. A Study on Performance Restoration of the Remanufactured Commercial Diesel Engine Air-compressor vol.29, pp.4, 2017, https://doi.org/10.7467/ksae.2021.29.4.299