DOI QR코드

DOI QR Code

Trasient Liquid Phase bonding for Power Semiconductor

전력반도체 패키징을 위한 Transient liquid phase 접합 기술

  • Roh, Myong-Hoon (Joining and Welding Research Institute, Osaka University) ;
  • Nishikawa, Hiroshi (Joining and Welding Research Institute, Osaka University) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Wonjoong (Department of Materials Science and Engineering, University of Seoul)
  • 노명훈 (오사카대학교 접합과학연구소) ;
  • ;
  • 정재필 (서울시립대학교 공과대학 신소재공학과) ;
  • 김원중 (서울시립대학교 공과대학 신소재공학과)
  • Received : 2017.02.08
  • Accepted : 2017.03.14
  • Published : 2017.03.31

Abstract

Recently, a demand in sustainable green technologies is requiring the lead free bonding for high power module packaging due to the environmental pollution. The Transient-liquid phase (TLP) bonding can be a good alternative to a high Pb-bearing soldering. Basically, TLP bonding is known as the combination of soldering and diffusion bonding. Since the low melting temperature material is fully consumed after TLP bonding, the remelting temperature of joint layer becomes higher than the operating temperature of the power module. Also, TLP bonding is cost-effective process than metal nanopaste bonding such as Ag. In this paper, various TLP bonding techniques for power semiconductor were described.

Keywords

References

  1. R. Khazaka, L. Memdizabal, D. Hevry, and R. Hanna, "Survey of High-Temperature Reliability of Power Electronics Packaging Components", IEEE Transactions on Power Electronics, 30(5), 2456 (2015). https://doi.org/10.1109/TPEL.2014.2357836
  2. Z. Liang, "Status and Trend of Automotive Power Module Packaging", Proc. 24th International Symposium on Power Semiconductor Devices & ICs, Bruge, Belgium, June, 325 (2012).
  3. J. Millan, "A Review of WBG Power Semiconductor Devices", Proc. International Semiconductor Conference(CAS), 57 (2012).
  4. K. S. Ki, D. H. Choi, and S. B. Jung, "Overview on Thermal Management Technology for High Power Device Packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014). https://doi.org/10.6117/kmeps.2014.21.2.013
  5. M. H. Roh, H. Nishkawa, and J. P. Jung, "A Review of Ag Paste Bonding for Automotive Power Device Packaging", J. Microelectron. Packag. Soc., 22(4), 15 (2015). https://doi.org/10.6117/kmeps.2015.22.4.015
  6. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and Stuart Muchlejohn, "Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering", Journal of Materials Engineering and Performance, 21(5), 629 (2012). https://doi.org/10.1007/s11665-012-0125-3
  7. M. Nahavandi, M. A. A. Hanim, Z. N. Ismarrubie, A. Hajalilou, R. Rohaizuan, and M. Z. S. Fadzli, "Effects of Silver and Antimony Content in Lead-free Hig-temperature Solders of Bi-Ag and Bi-Sb on Copper Substrate", Journal of Electronic Materials, 43(2), 579 (2014). https://doi.org/10.1007/s11664-013-2873-8
  8. T. Yamakawa, T. Takenmoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, "Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-temperature Bonding using Cu Nanoparticle Paste", Journal of Electronic Materials, 42(6), 1260 (2013). https://doi.org/10.1007/s11664-013-2583-2
  9. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, "Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications", Journal of Electronic Materials, 34(2), 168 (2005). https://doi.org/10.1007/s11664-005-0229-8
  10. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, and Eiichi Ide, "Interfacial Bonding Mechanism using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior", Materials Transactions, 49(7), 1537 (2008). https://doi.org/10.2320/matertrans.MF200805
  11. T. A. Tollefsen, A. Larsson, O. M. Loovvik, and K. E. "Aasmundtveit, High Temperature Interconnect and Die Attach Technology: Au-Sn SLID Bonding", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(6). 904 (2013). https://doi.org/10.1109/TCPMT.2013.2253353
  12. R. I. Rodriguez, D. Ibitayo, and P. O. Quintero, "Thermal Stability Characterization of the Au-Sn Bonding for High-Temperature Applications", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(4), 549(2013). https://doi.org/10.1109/TCPMT.2013.2243205
  13. A. Sharif, C. L. Gan, and Z. Chen, "Transient Liquid Phase Ag-Based Solder Technology for High-Temperature Packaging Applications", Journal of Alloys and Compounds, 587, 365 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204
  14. A. Lis and C. Leinenbach, "Effect of Process and Service Conditions on TLP-Bonded Components with (Ag, Ni-)Sn Interlayer Combinations", Journal of Electronic Materials, 44(11), 4576 (2015). https://doi.org/10.1007/s11664-015-3982-3
  15. M. H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, "Pressureless Bonding by Micro-Sized Silver Particle Paste for High-Temperature Electronic Packaging", Materials Transactions, 57(7), 1209 (2016). https://doi.org/10.2320/matertrans.MD201513
  16. http://www.infomine.com/ChartsAndData/
  17. H. A. Mustain, W. K. Brown, and S. S. Ang, "Transient Liquid Phase Die Attach for High-Temperature Silicon Carbide Power Devices", IEEE Transactions on Components and Packaging Technology, 33(3), 563 (2010). https://doi.org/10.1109/TCAPT.2010.2046901
  18. J. F. Li, P. A. Agyakwa, and C. M. Johnson, "Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient Liquid-Phase Joints Used for Power Die Attachment", Journal of Electronic Materials, 43(4), 983 (2014). https://doi.org/10.1007/s11664-013-2971-7
  19. K. Chu, Y. Sohn, and C. Moona, "A Comparative Study of Cn/Sn/Cu and Ni/Sn/Ni Solder Joints for Low Temperature Stable Transient Liquid Phase Bonding", Scripta Materialia, 109, 113 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032
  20. S. W. Yoon, M. D. Glover, and K. Shiozaki, "Nickel-Tin Transient Liquid Phase Bonding Toward High-Temperature Operational Power Electronics in Electrified Vehicles", IEEE Transactions on Power Electronics, 28(5), 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211
  21. N. S. Bosco and F. W. Zok, "Critical Interlayer Thickness for Transient Liquid Phase Bonding in the Cu-Sn System", Acta Materialia, 52, 2965 (2004). https://doi.org/10.1016/j.actamat.2004.02.043
  22. J. F. Lynch, L. Feinstein, and R. A. Huggins, "Brazing by the Diffusion Controlled Formation of a Liquid Intermediate Phase", Weld J, 38, 85s (1959).
  23. W. A. Owczarski, "Eutectic Brazing of Zircalloy 2 to Type 304 Stainless Steel", Weld J, 42, 78s (1962).
  24. L. Bernstein, "Semiconductor Joining by Solid-Liquid-Interdiffusion (Slid) Process .1. Systems Ag-In, Au-In, and Cu- In", J. Electrochem. Soc., 113, 1282 (1966). https://doi.org/10.1149/1.2423806
  25. L. Bernstein and H. Bartholomew, "Applications of Solid- Liquid Interdiffusion (Slid) Bonding in Integrated-Circuit Fabrication", Trans. Metall. Min. Soc (Aime)., 236, 405 (1966).
  26. D. Paulonis, D. S. Duvall, and W. A. Owczarski, "Diffusion bonding utilizing transient liquid phase", US Patent US3678570 A, (1972).
  27. http://www.geocities.jp/stkyjheiwa/binaryphasediagram.htm
  28. J. F. Li, P. A. Agyakwa, and C. M. Johnson, "Interfacial Reaction in Cu/Sn/Cu System During the Transient Liquid Phase Soldering Process", Acta Mater, 59, 1198 (2011). https://doi.org/10.1016/j.actamat.2010.10.053
  29. R. Labie, W. Ruythooren, and J. V. Humbeeck, "Solid State Diffusion in Cu-Sn and Ni-Sn Diffusion Couples with Flip- Chip Scale Dimensions", Intermetallics, 15, 396 (2007). https://doi.org/10.1016/j.intermet.2006.08.003
  30. J. Y. Song, J. Yu, T. Y. Lee, "Effects of Reactive Diffusion on Stress Evolution in Cu-Sn Films", Scripta Mater, 51, 167 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.032
  31. A. Lis, "High Power Electronics Packaging by Transient Liquid Phase bonding", a Thesis of Doctor of Sciences of Eth Zurich, (2015).
  32. H. H. Hsu, Y. T. Huang, S. Y. Huang, and T. C. Chang, "Evolution of the Intermetallic Compounds in Ni/Sn-2.5Ag/Ni Microbumps for Three-Dimensional Integrated Circuits", Journal of electronic Materials, 44(10), 3888 (2015). https://doi.org/10.1007/s11664-015-3925-z
  33. X. Liu, S. He, and H. Nishikawa, "Thermally Stable Cu3Sn/ Cu Composite Joint for High-Temperature Power Device", Scripta Materialia, 110, 101 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.011
  34. T. Ishizaki and R. Watanabe, "Pressurelss Bonding by Use of Cu and Sn Mixed Nanoparticles", Journal of Electronic Materials, 43(12), 4413 (2014). https://doi.org/10.1007/s11664-014-3368-y
  35. A. Sharif, C. L. Gan, and Z. Chen, "Transient Liquid Phase Ag-based Solder Technology for High-Temperature Packaging Applications", Journal of Alloys and Compounds, 587, 365 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204

Cited by

  1. 차세대 전력반도체 소자 및 패키지 접합 기술 vol.26, pp.3, 2017, https://doi.org/10.6117/kmeps.2019.26.3.015
  2. 파워모듈의 TLP 접합 및 와이어 본딩 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.007
  3. Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics vol.10, pp.7, 2020, https://doi.org/10.3390/met10070934