DOI QR코드

DOI QR Code

Kinetic Analyses on Thermal Degradation of Epoxy Based Adhesive for Packaging Application

센서 패키지용 고분자 접착제의 열화 거동 분석

  • Kim, Yeong K. (Department of Convergence and Engineering Management College of Engineering, Inha University) ;
  • Lee, Yoon-Sun (Department of Material Science and Engineering, College of Engineering, Inha University)
  • 김영국 (인하대학교 공과대학 융합기술경영학부) ;
  • 이윤선 (인하대학교 공과대학 신소재공학과)
  • Received : 2016.12.13
  • Accepted : 2017.03.23
  • Published : 2017.03.31

Abstract

An analysis of thermal degradation of epoxy based adhesive performed by thermogravimetry tests are presented in this study. Six different heating rates were employed for the weight change measurements. Based on the data, an Arrhenius type modeling equation was developed by calculating activation energies and proportional constants, and $n^{th}$ polynomial function was adopted to predict the weight change rates. The prediction results by the modeling was compared with the data using the average activation energy. It was found that the activation energy at the each heating rate was not same due to the different degradation kinetics, especially at the high heating rate. To overcome this pitfall, a new approach using exponential function series was introduced and employed. The calculation results showed very good agreements with the test data regardless of the heating rates.

열중량 분석(Thermogravimetry)을 이용하여 열화시간 경과에 따른 접착 소재의 열에 대한 열화 특성을 분석하였다. 실험에는 여섯 가지의 온도 승온률에서 측정된 데이터를 이용하여 열화에 따른 동적 반응을 분석하였다. 이 데이터를 바탕으로 아레니우스 방정식을 이용하여 활성 에너지와 비례 상수 등 모델에 필요한 계수를 계산하였다. 또한 열화거동을 예측하는 방정식으로는 무게 감소에 따른 간단한 n차 방정식을 이용하였다. 구해진 예측 모델은 실험 데이터와 비교하여 검증하였다. 계산 결과 각 승온률에 따라 활성화 에너지의 크기가 다름에 따라 평균값을 사용하여 계산한 결과는 낮은 승온률인 경우에는 잘 예측하였지만 높은 승온률인 경우에는 측정값과 차이를 보였다. 이와 같은 문제를 해결하기 위해 지수함수 급수를 이용한 새로운 모델링 방법이 처음 시도되었으며 예측된 결과는 승온률에 관계없이 실험 데이터와 잘 일치하였다.

Keywords

References

  1. S. Noijen, R. Engelen, J. Martens, A. Opran, O. van der Sluis, and R. van Silfhout, "Prediction of the epoxy moulding compound aging effect on package reliability", Microelectronics Reliability, 50(7), 917 (2010). https://doi.org/10.1016/j.microrel.2010.02.025
  2. D. Lu, and C. P. Wong, "Development of Conductive Adhesives for Solder Replacement", IEEE Transactions on Components and Packaging Technologies, 23(4), 620 (2000). https://doi.org/10.1109/6144.888844
  3. L. Frisk, and K. Saarinen-Pulli, "Reliability of adhesive joined thinned chips on flexible substrates under humid conditions", Microelectronics Reliability, 54(9), 2058 (2014) https://doi.org/10.1016/j.microrel.2014.07.157
  4. Y. K. Kim, H. J. Kang, and J. K. Kim, "Analyses on Airbag Sensor Signals by Different Packaging", J. Microelectron. Packag. Soc., 22(4), 105 (2015). https://doi.org/10.6117/kmeps.2015.22.4.105
  5. Y. K. Kim, and D. S. Hwang, "Experimental Assessment of PBGA Packaging Reliability under Strong Random Vibrations", J. Microelectron. Packag. Soc., 20(3), 59 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.059
  6. B. E. Tiganisa, L .S. Burna, P. Davisa, and A. J. Hill, "Thermal degradation of acrylonitrile-.butadiene-.styrene (ABS) blends", Polymer Degradation and Stability, 76(3), 425 (2002). https://doi.org/10.1016/S0141-3910(02)00045-9
  7. B. M. D. Fernando, X. Shi, and S. G. Croll, "Molecular relaxation phenomena during accelerated weathering of a polyurethane coating", J. Coat. Technol. Res., 5(1), 1 (2008). https://doi.org/10.1007/s11998-007-9077-1
  8. T. Ozawa, "A New Method of Analyzing Thermogravimetric Data", Bulletin of the chemical society of Japan, 38(11), 1881 (1965). https://doi.org/10.1246/bcsj.38.1881
  9. H. L. Friedman, "Kinetics of Thermal Degradation of Char- Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic", ournal of Polymer Science: Polymer Symposia, 6(1), 183 (1964).
  10. J. H. Flynn, and L. A. Wall, "General Treatment of the Thermogravimetry of Polymers", J. Res. Nat. Bur. Stand., 70(6), 487 (1966).
  11. J. W. Park, S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, "A kinetic analysis of thermal degradation of polymers using a dynamic method", Polymer Degradation and Stability, 67(3), 535 (2000). https://doi.org/10.1016/S0141-3910(99)00155-X
  12. M. Celina, K. T. Gillen, and R. A. Assink, "Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes", Polymer Degradation and Stability, 90(3), 395 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.05.004
  13. P. E. Sanchez-Jimenez, L. A. Perez-Maqueda, A. Perejon, and J. M. Criado, "Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway", Polymer Degradation and Stability, 94(11), 2079 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.07.006
  14. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, "Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis", Polymer Degradation and Stability, 93(1), 90 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  15. F. Huang, "Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs)", Polymers, 4(2), 1012 (2012). https://doi.org/10.3390/polym4021012
  16. R. Svoboda, and Jiri Malek, "Glass transition in polymers: (In)correct determination of activation energy", Polymer, 54(5), 1504 (2013). https://doi.org/10.1016/j.polymer.2013.01.002
  17. S. Vyazovkin, "A time to search: finding the meaning of variable activation energy", Phys. Chem. Chem. Phys., 18(28), 18643 (2016). https://doi.org/10.1039/C6CP02491B