DOI QR코드

DOI QR Code

Translational control of mRNAs by 3'-Untranslated region binding proteins

  • Yamashita, Akio (Department of Molecular Biology, Yokohama City University School of Medicine) ;
  • Takeuchi, Osamu (Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University)
  • Received : 2017.03.08
  • Published : 2017.04.30

Abstract

Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.

Keywords

References

  1. Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473, 337-342 https://doi.org/10.1038/nature10098
  2. Kong J and Lasko P (2012) Translational control in cellular and developmental processes. Nat Rev Genet 13, 383-394
  3. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518 https://doi.org/10.1126/science.1111443
  4. Jung H, Gkogkas CG, Sonenberg N and Holt CE (2014) Remote control of gene function by local translation. Cell 157, 26-40 https://doi.org/10.1016/j.cell.2014.03.005
  5. Ivanov P and Anderson P (2013) Post-transcriptional regulatory networks in immunity. Immunol Rev 253, 253-272 https://doi.org/10.1111/imr.12051
  6. Castello A, Fischer B, Frese CK et al (2016) Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol Cell 63, 696-710 https://doi.org/10.1016/j.molcel.2016.06.029
  7. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNAbinding proteins. Cell 149, 1393-1406 https://doi.org/10.1016/j.cell.2012.04.031
  8. Gerstberger S, Hafner M and Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15, 829-845 https://doi.org/10.1038/nrg3813
  9. Tian B and Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18, 18-30 https://doi.org/10.1038/nrm.2016.116
  10. Chen CA and Shyu AB (2017) Emerging Themes in Regulation of Global mRNA Turnover in cis. Trends Biochem Sci 42, 16-27 https://doi.org/10.1016/j.tibs.2016.08.014
  11. Sonenberg N and Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731-745 https://doi.org/10.1016/j.cell.2009.01.042
  12. Jackson RJ, Hellen CU and Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113-127 https://doi.org/10.1038/nrm2838
  13. Danckwardt S, Hentze MW and Kulozik AE (2008) 3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27, 482-498 https://doi.org/10.1038/sj.emboj.7601932
  14. Furuichi Y (2015) Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci 91, 394-409 https://doi.org/10.2183/pjab.91.394
  15. Uchida N, Hoshino S, Imataka H, Sonenberg N and Katada T (2002) A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 277, 50286-50292 https://doi.org/10.1074/jbc.M203029200
  16. Rom E, Kim HC, Gingras AC et al (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4Erelated cap-binding protein. J Biol Chem 273, 13104-13109 https://doi.org/10.1074/jbc.273.21.13104
  17. Cho PF, Poulin F, Cho-Park YA et al (2005) A new paradigm for translational control: inhibition via 5'-3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121, 411-423 https://doi.org/10.1016/j.cell.2005.02.024
  18. Cho PF, Gamberi C, Cho-Park YA, Cho-Park IB, Lasko P and Sonenberg N (2006) Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr Biol 16, 2035-2041 https://doi.org/10.1016/j.cub.2006.08.093
  19. Morita M, Ler LW, Fabian MR et al (2012) A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 32, 3585-3593 https://doi.org/10.1128/MCB.00455-12
  20. Fu R, Olsen MT, Webb K, Bennett EJ and Lykke-Andersen J (2016) Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements. RNA 22, 373-382 https://doi.org/10.1261/rna.054833.115
  21. Uniacke J, Holterman CE, Lachance G et al (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486, 126-129 https://doi.org/10.1038/nature11055
  22. Nelson MR, Leidal AM and Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaugmediated translational repression. EMBO J 23, 150-159 https://doi.org/10.1038/sj.emboj.7600026
  23. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R and Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4, 1017-1027 https://doi.org/10.1016/S1097-2765(00)80230-0
  24. Jung MY, Lorenz L and Richter JD (2006) Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 26, 4277-4287 https://doi.org/10.1128/MCB.02470-05
  25. Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042-1054 https://doi.org/10.1016/j.cell.2008.07.031
  26. Iwasaki S, Kawamata T and Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34, 58-67 https://doi.org/10.1016/j.molcel.2009.02.010
  27. Fukaya T, Iwakawa HO and Tomari Y (2014) MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol Cell 56, 67-78 https://doi.org/10.1016/j.molcel.2014.09.004
  28. Fukao A, Mishima Y, Takizawa N et al (2014) MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol Cell 56, 79-89 https://doi.org/10.1016/j.molcel.2014.09.005
  29. Meijer HA, Kong YW, Lu WT et al (2013) Translational repression and eIF4A2 activity are critical for microRNAmediated gene regulation. Science 340, 82-85 https://doi.org/10.1126/science.1231197
  30. Filipowicz W and Sonenberg N (2015) The long unfinished march towards understanding microRNA-mediated repression. RNA 21, 519-524 https://doi.org/10.1261/rna.051219.115
  31. Izaurralde E (2013) A role for eIF4AII in microRNAmediated mRNA silencing. Nat Struct Mol Biol 20, 543-545 https://doi.org/10.1038/nsmb.2582
  32. Mukhopadhyay R, Jia J, Arif A, Ray PS and Fox PL (2009) The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci 34, 324-331 https://doi.org/10.1016/j.tibs.2009.03.004
  33. Duncan K, Grskovic M, Strein C et al (2006) Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes Dev 20, 368-379 https://doi.org/10.1101/gad.371406
  34. Medenbach J, Seiler M and Hentze MW (2011) Translational control via protein-regulated upstream open reading frames. Cell 145, 902-913 https://doi.org/10.1016/j.cell.2011.05.005
  35. Harcourt EM, Kietrys AM and Kool ET (2017) Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339-346 https://doi.org/10.1038/nature21351
  36. Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 1388-1399 https://doi.org/10.1016/j.cell.2015.05.014
  37. Lin S, Choe J, Du P, Triboulet R and Gregory RI (2016) The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 62, 335-345 https://doi.org/10.1016/j.molcel.2016.03.021
  38. Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosinedependent regulation of messenger RNA stability. Nature 505, 117-120 https://doi.org/10.1038/nature12730
  39. Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M and Hentze MW (1997) mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89, 597-606 https://doi.org/10.1016/S0092-8674(00)80241-X
  40. Besse F and Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9, 971-980 https://doi.org/10.1038/nrm2548
  41. Deng Y, Singer RH and Gu W (2008) Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22, 1037-1050 https://doi.org/10.1101/gad.1611308
  42. Huttelmaier S, Zenklusen D, Lederer M et al (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512-515 https://doi.org/10.1038/nature04115
  43. Hussey GS, Chaudhury A, Dawson AE et al (2011) Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol Cell 41, 419-431 https://doi.org/10.1016/j.molcel.2011.02.003
  44. Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP and Kimble J (2012) A conserved PUF-AgoeEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19, 176-183 https://doi.org/10.1038/nsmb.2214
  45. Goldstrohm AC and Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9, 337-344 https://doi.org/10.1038/nrm2370
  46. Lim J, Ha M, Chang H et al (2014) Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365-1376 https://doi.org/10.1016/j.cell.2014.10.055
  47. Subtelny AO, Eichhorn SW, Chen GR, Sive H and Bartel DP (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71 https://doi.org/10.1038/nature13007
  48. Park JE, Yi H, Kim Y, Chang H and Kim VN (2016) Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 62, 462-471 https://doi.org/10.1016/j.molcel.2016.04.007
  49. Lim J, Lee M, Son A, Chang H and Kim VN (2016) mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev 30, 1671-1682 https://doi.org/10.1101/gad.284802.116
  50. Kim JH and Richter JD (2006) Opposing polymerasedeadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24, 173-183 https://doi.org/10.1016/j.molcel.2006.08.016
  51. Hake LE and Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617-627 https://doi.org/10.1016/0092-8674(94)90547-9
  52. Schweingruber C, Rufener SC, Zund D, Yamashita A and Muhlemann O (2013) Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta 1829, 612-623 https://doi.org/10.1016/j.bbagrm.2013.02.005
  53. Mino T, Murakawa Y, Fukao A et al (2015) Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell 161, 1058-1073 https://doi.org/10.1016/j.cell.2015.04.029
  54. Kaygun H and Marzluff WF (2005) Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat Struct Mol Biol 12, 794-800 https://doi.org/10.1038/nsmb972
  55. Kim YK, Furic L, Desgroseillers L and Maquat LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120, 195-208 https://doi.org/10.1016/j.cell.2004.11.050
  56. Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251 https://doi.org/10.1016/j.cell.2013.05.016
  57. Kozak M (2006) Rethinking some mechanisms invoked to explain translational regulation in eukaryotes. Gene 382, 1-11 https://doi.org/10.1016/j.gene.2006.06.004

Cited by

  1. Extracellular Vesicle‐Associated RNA as a Carrier of Epigenetic Information vol.8, pp.10, 2017, https://doi.org/10.3390/genes8100240
  2. Portable fluorescence-based microRNA detection system based on isothermal signal amplification technology pp.08854513, 2018, https://doi.org/10.1002/bab.1699
  3. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00507