DOI QR코드

DOI QR Code

Vortex Tube Modeling Using the System Identification Method

시스템 식별 방법을 이용한 볼텍스 튜브 모델링

  • Han, Jaeyoung (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Jeong, Jiwoong (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Yu, Sangseok (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Im, Seokyeon (Dept. of Automotive Engineering, Tongmyeong Univ.)
  • Received : 2016.10.07
  • Accepted : 2017.03.07
  • Published : 2017.05.01

Abstract

In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

본 연구에서는 고온측과 저온측의 온도 예측을 위한 볼텍스 튜브 모델을 개발하였다. 볼텍스 튜브 모델은 시스템 식별 방법을 기반으로 개발하였으며, 개발된 볼텍스 튜브 모델은 ARX(Auto-Regressive with eXtra inputs)모델을 기반으로 하여 설계되었다. 본 연구에서 유도된 다항식 모델은 모델의 정확성을 확인하기 위해 실험데이터와 검증하였다. 또한, 유도된 모델은 안정성 검사 통과를 보여준다. 저온측 스로틀 밸브 각도를 변경하였을 때, 적절히 온도 분리가 이루어지는 것을 확인하였으며, 동적응답을 확인하기 위해 저온측 스로틀 밸브 각도를 변경 시켰을 경우, 볼텍스 튜브 모델의 온도가 적절히 분리 되는 것을 확인할 수 있다. 결론적으로, 개발된 볼텍스 튜브 모델을 저온측 스로틀 밸브 각도에 따라 온도 분리 예측이 가능하다는 것을 확인할 수 있다.

Keywords

References

  1. Li, N., Zeng, Z. Y., Wang, Z., Han, X. H. and Chen, G. M., 2015, "Experimental Study of the Energy Separation in a Vortex Tube," International Journal of Refrigeration, Vol. 55, pp. 93-101. https://doi.org/10.1016/j.ijrefrig.2015.03.011
  2. Farzaneh-Gord, M. and Said, M., 2014, "Improving Vortex Tube Performance Based on Vortex Generator Design," Energy, Vol. 72, pp. 492-500. https://doi.org/10.1016/j.energy.2014.05.071
  3. Thakare, H. R., Monde, A. and Parekh, A.D., 2015, "Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube: A Review," Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1043-1071. https://doi.org/10.1016/j.rser.2015.07.198
  4. Thakare, H.R., Monde, A., Patil, B.S. and Parekh, AD., 2015, "Numerical Investigation of Flow Characteristics in Counter Flow Vortex Tube," Procedia Engineering, Vol. 127, pp. 170-176. https://doi.org/10.1016/j.proeng.2015.11.323
  5. Katanoda, H., Yusof, M.H.b. and Morita, H., 2015, "Energy Separation Mechanism in Unconfined Laminar Compressible Vortex," International Journal of Refrigeration, Vol. 59, pp. 115-123. https://doi.org/10.1016/j.ijrefrig.2015.07.008
  6. Xue, Y., Arjomandi, M. and Kelso, R., 2013, "The Working Principle of a Vortex Tube," International Journal of Refrigeration, Vol. 36, pp. 1730-1740. https://doi.org/10.1016/j.ijrefrig.2013.04.016
  7. Sadi, M. and Farzaneh-Gord, M., 2014, "Introduction of Annular Vortex Tube and Experimental Comparison with Ranque-hilsch Vortex Tube," International Journal of Refrigeration, Vol. 46, pp. 142-151. https://doi.org/10.1016/j.ijrefrig.2014.07.004
  8. Liu, X. and Liu, Z., 2014, "Investigation of the Energy Separation Effect and Flow Mechanism Inside a Vortex Tube," Applied Thermal Engineering, Vol. 67, pp. 494-506. https://doi.org/10.1016/j.applthermaleng.2014.03.071
  9. Wu, Y. T., Ding, Y., Ji, Y. B., Ma, C. F. and Ge, M. C., 2007, "Modification and Experimental Research on Vortex Tube," International Journal of Refrigeration, Vol. 30, pp. 1042-1049. https://doi.org/10.1016/j.ijrefrig.2007.01.013
  10. Skye, H. M., Nellis, G. F. and Klein, S. A., 2007, "Modification and Experimental Research on Vortex Tube," International Journal of Refrigeration, Vol. 30, pp. 1042-1049. https://doi.org/10.1016/j.ijrefrig.2007.01.013
  11. Eiamsa-ard, S., 2010, "Experimental Investigation of Energy Separation in a Counter-flow Ranque-Hilsch Vortex Tube with Multiple Inlet Snail Entries," International Communications in Heat and Mass Transfer, Vol. 37, pp. 637-643. https://doi.org/10.1016/j.icheatmasstransfer.2010.02.007
  12. Keesman, K. J., 2011, "System Identification," Springer, London Dordrecht , pp. 113-116.