DOI QR코드

DOI QR Code

Pervaporation of binary Water/Methanol and Water/Butanol Mixtures through Zeolite 4A Membranes: Experiments and Modeling

제올라이트 4A 분리막을 이용한 물/메탄올, 물/부탄올 혼합물의 투과증발 특성 연구: 실험 및 모형

  • Received : 2017.10.25
  • Accepted : 2017.11.06
  • Published : 2017.12.31

Abstract

In this study, pervaporation performances of water/methanol and water/butanol mixture were evaluated using zeolite 4A membranes manufacutred by FINETECH by experimental works and numerical modeling. Permeation and separation characteristics, such as flux and separation factor, were analyzed by gas chromatography (TCD) and liquid nitrogen traps. Experiments have shown that water is selectively separated from a mixture of water and methanol (separation factor up to approximately 250) and water and butanol (separation factor up to approximately 1,500). Generalized Maxwell Stefan (GMS) theory was implemented to predict pervaporation behaviors of water/alcohol mixtures and diffusional coefficients of zeolite layer were obtained through parameter estimation using $MATLAB^{(R)}$ optimization toolbox. Since the pore size of zeolite 4A are much larger than kinetic diameter of water molecules and smaller than those of methanol and butanol, zeolite 4A membranes can be applied to in situ water removal process such as membrane reactors or hybrid reaction-dehydration process.

본 연구에서는 (주)파인텍에서 제조한 제올라이트 4A 분리막을 이용하여 물/메탄올, 물/부탄올 혼합물의 투과증발실험을 수행하였다. 분리막을 투과한 기체분자들은 액체질소트랩을 이용하여 포집하였으며, 기체크로마토그래피(TCD)를 이용하여 혼합물의 조성을 분석하였다. 실험을 통해 물과 메탄올(분리계수 최대 250 이상), 물과 부탄올(분리계수 최대 1,500 이상)의 혼합물에서 선택적으로 물을 분리하는 것을 확인하였다. GMS (generalized Maxwell Stefan) 이론을 적용하여 2성분계의 투과증발 거동을 모사하였으며, 상수추정을 통하여 제올라이트 비지지체의 흡착상수 및 확산상수를 구하였다. 제올라이트 4A 분리막의 경우 기공의 크기가 물보다는 크고, 메탄올, 부탄올 보다는 작기 때문에, 알코올로부터 물을 분리시키는 공정에 적용시킬 수 있다. 바이오 에탄올 분리, 부탄올 분리, 막반응기, 하이브리드 반응-탈수 공정 등에 적용할 수 있을 것으로 사료된다.

Keywords

References

  1. R. C. Binning, R. J. Lee, J. F. Jennings, and E. C. Martin, "Separation of liquid mixtures by permeation", Ind. Eng. Chem., 53, 45 (1961).
  2. A. S. Michales, R. F. Baddour, H. J. Bixler, and C. Y. Choo, "Conditioned polyethylene as a permselective membrane. Separation of isomeric xylenes", Ind. Eng. Chem. Process Des. Dev., 1, 14 (1962). https://doi.org/10.1021/i260001a003
  3. P. Aptel, J. Cunny, J. Jozefowicz, G. Morel, and J. Neel, "Liquid transport through membranes prepared by grafting of polar monomers onto poly (tetrafluoroethylene) films. I. Some fractionations of liquid mixtures by pervaporation", J. Appl. Polym. Sci., 16, 1061 (1972). https://doi.org/10.1002/app.1972.070160502
  4. C. C. Pereira, A. C. Habert, R. Nobrega, and C. P. Borges, "New insights in the removal of diluted volatile organic compounds from dilute aqueous solution by pervaporation process", J. Memb. Sci., 138, 227 (1998). https://doi.org/10.1016/S0376-7388(97)00225-1
  5. D. Hofmann, L. Fritz, and D. Paul, "Molecular modelling of pervaporation separation of binary mixtures with polymeric membranes", J. Membr. Sci., 144, 145 (1998). https://doi.org/10.1016/S0376-7388(98)00048-9
  6. R. Rautenbach and R. Albrecht, "The separation potential of pervaporation : Part 1. discussion of transport equations and comparison with reverse osmosis", J. Membr. Sci., 25, 1 (1985). https://doi.org/10.1016/S0376-7388(00)83001-X
  7. Y. M. Lee, "Pervaporation of organic liquid mixtures through polymer membranes", Polymer, 13, 3 (1989).
  8. Y. K. Hong and W. H. Hong, "Pervaporation characteristics of aqueous isopropanol solution using tubular type PDMS/ceramic composite membrane", Hwahak Konghak, 36, 524 (1998).
  9. Q. Liu, R. D. Noble, J. L. Falconer, and H. H. Funke, "Organics/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  10. H. S. Ahn, H. R. Lee, and Y. T. Lee, "NaY zeolite membrane pervaporation for dehydration from ethylacetate manufacturing process", Hwahak Konghak, 43, 366 (2005).
  11. H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. Okamoto, "Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures", J. Mater. Sci. Lett., 14, 206 (1995). https://doi.org/10.1007/BF00318258
  12. W. Won, X. Feng, and D. Lawless, "Pervaporation with chitosan membranes: separation of dimethylcarbonate/methanol/water mixtures", J. Membr. Sci., 209, 493 (2002). https://doi.org/10.1016/S0376-7388(02)00367-8
  13. T. C. Bowen, R. D. Noble, and J. L. Falconer, "Fundamentals and applications of pervaporation through zeolite membranes", J. Membr. Sci., 245, 1 (2004). https://doi.org/10.1016/j.memsci.2004.06.059
  14. A. Kasik and Y. S. Lin, "Organic solvent pervaporation properties of MOF-5 membranes", Sep. Purif. Technol., 121, 38 (2014). https://doi.org/10.1016/j.seppur.2013.04.033
  15. Y. Morigami, M. Kondo, J. Abe, H. Kita, and K. Okamoto, "The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane", Sep. Purif. Technol., 25, 251 (2001). https://doi.org/10.1016/S1383-5866(01)00109-5
  16. The Membrane Society of Korea Ed., "Membrane separation - basic", pp. 291-354, Jayoo Academy, Seoul, Korea (1996).
  17. A. J. Burggraaf and L. Cot, "Fundamentals of inorganic membrane, science and technology, 1996", pp. 35-66, Elsevier, Amsterdam, Netherlands (2009).
  18. P. Uchytil, "Gas permeation in ceramic membranes Part 1. Theory and testing of ceramic membranes", J. Membr. Sci., 97, 139 (1994). https://doi.org/10.1016/0376-7388(94)00156-S
  19. E. A. Mason and A. P. Malinauskas, "Gas transport in porous media : the dusty-gas model", pp 30-50, Elsevier Science Ltd., 17, New York, NY (1983).
  20. A. Tuchlenski, P. Uchytil, and A. Seidel-Morgenstern, "An experimental study of combined gas phase and surface diffusion in porous glass", J. Membr. Sci., 140, 165 (1998). https://doi.org/10.1016/S0376-7388(97)00270-6
  21. F. Kapteijn, J. A. Moulijn, and R. Krishna, "The generalized Maxwell-Stefan model for diffusional in zeolites: sorbate molecules with different saturation loadings", Chem. Eng. Sci., 55, 2923 (2000). https://doi.org/10.1016/S0009-2509(99)00564-3
  22. F. Kapteijn, W. J. W. Bakker, G. Zheng, J. Poppe, and J. A. Moulijn, "Permeation and separation of light hydrocarbons through a silicalite-1 membrane Application of the generalized Maxwell-Stefan equations", Chem. Eng. J., 57, 145 (1995).
  23. R. Krishna and L. J. P. van den Broeke, "The Maxwell-Stefan description of mass transport across zeolite membranes", Chem. Eng. J., 57, 155 (1995).
  24. H. Renon and J. M. Prausnitz, "Local composition in thermodynamic excess functions for liquid mixtures", AIChE J., 14, 135 (1968). https://doi.org/10.1002/aic.690140124
  25. ASPEN DATABANK.
  26. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, "The Properties of Gases and Liquids (3rd Ed.)", McGraw-Hill, New York (1977).
  27. S. Y. Li, R. Srivastava, and R. S. Parnas, "Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane", J. Membr. Sci., 363, 287 (2010). https://doi.org/10.1016/j.memsci.2010.07.042
  28. L. Gongping, H. Dan, W. Wang, X. Fenjuan, and J. Wanqin, "Pervaporation Separation of Butanol- Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane", Chin. J. Chem. Eng., 19, 40 (2011). https://doi.org/10.1016/S1004-9541(09)60174-9