DOI QR코드

DOI QR Code

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer

폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질

  • Patel, Rajkumar (School of Electrical and Computer Engineering, The University of Seoul) ;
  • Park, Jung Tae (Department of Chemical Engineering, Konkuk University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2017.10.27
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

인위적인 온실 가스 배출로 인한 자연 재해가 증가하고 있으며 이로 인해 기체 분리막의 개발이 촉진되게 되었다. 이산화탄소($CO_2$)는 지구 온난화의 주요 원인이다. 고유의 유연성을 가지는 유기 고분자 막은 기체 분리막의 좋은 후보군 중 하나이며, 이 중 이산화탄소에 대한 높은 확산도를 가지고 있는 폴리디메틸실록산(PDMS)은 유망한 소재이다. 또한, 폴리비닐피롤리돈(PVP)은 이산화탄소에 대한 높은 용해도를 가지고 있는 고분자로 기체 분리막에 활용될 수 있다. 따라서 본 연구에서는 용이한 조건에서 간단한 단일 반응 자유 라디칼 중합에 의하여 다양한 조성의 폴리디메틸실록산-폴리비닐피롤리돈(PDMS-PVP) 빗살 공중합체를 합성하였다. PDMS와 PVP로 합성된 공중합체는 FTIR을 통해 분석하였다. 고분자의 형태학 및 열적 특성은 TEM, TGA 및 DSC를 통하여 분석하였다. PDMS-PVP 빗살 공중합체를 다공성 폴리설폰 지지체 위에 코팅하여 복합막을 제조했으며, 제조한 복합막의 기체 투과 특성을 분석하였다. 그 결과 이산화탄소의 투과도 및 이산화탄소/질소 선택도가 각각 140.6 GPU 및 12.0에 도달하였다.

Keywords

References

  1. C. H. Lau, P. Li, F. Li, T. S. Chung, and D. R. Paul, "Reverse-selective polymeric membranes for gas separations", Progress Polym. Sci., 38, 740 (2013) https://doi.org/10.1016/j.progpolymsci.2012.09.006
  2. S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, and I. F. J. Vankelecom, "Membrane-based technologies for biogas separations", Chem. Soc. Rev., 39, 750 (2010). https://doi.org/10.1039/B817050A
  3. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  4. W. W. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  5. H. Lin, Z. Ze, Z. Sun, J. Vu, A. Ng, M. Mohammaed, J, Kneip, T. C. Kerkel, T. Wu, and R. C. Mambrecht, "$CO_2$-selective membranes for hydrogen production and $CO_2$ capture - Part I: Membrane development", J. Membr. Sci., 457, 149 (2014). https://doi.org/10.1016/j.memsci.2014.01.020
  6. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", J. Polym. Sci. B: Polym. Phys., 38, 415 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
  7. P. Jha and J. D. Way, "Concentration and temperature dependence on diffusivities of $CO_2$ and N2 for poly(dimethyl, methylphenyl siloxane)", AIChE J., 54, 143 (2008). https://doi.org/10.1002/aic.11357
  8. F. Wu, L. Li, Z. Xu, S. Tan, and Z. Zhang, "Transport study of pure and mixed gases through PDMS membrane", Chem. Eng. J., 117, 51 (2006). https://doi.org/10.1016/j.cej.2005.12.010
  9. M. Sadrzadeh, K. Shajidi, and T. Mohammadi, "Synthesis and gas permeation properties of a single layer PDMS membrane", J. Appl. Polym. Sci., 117, 33 (2010).
  10. G. Firpo, E. Angeli, L. Repetto, and U. Valbusa, "Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes", J. Membr. Sci., 481, 1 (2015). https://doi.org/10.1016/j.memsci.2014.12.043
  11. T. Hong, S. Chatterjee, S. M. Mahurin, F. Fan, Z. Tian, D. E. Jiang, B. K. Long, J. W. Mays, A. P. Sokolov, and T. Saito "Impact of tuning $CO_2$-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation", J. Membr. Sci., 530, 213 (2017). https://doi.org/10.1016/j.memsci.2017.02.033
  12. A. Ghadimi, M. Sadrzadeh, K. Shahidi, and T. Mohammadi, "Ternary gas permeation through a synthesized PDMS membrane: Experimental and modeling", J. Membr. Sci., 344, 225 (2009). https://doi.org/10.1016/j.memsci.2009.08.001
  13. A. J. Ashworth, B. J. Brisdon, R. England, B. S. R. Reddy, and I. Zafar, "The permselectivity of polyorganosiloxanes containing ester functionalities", J. Membr. Sci., 56, 217 (1991). https://doi.org/10.1016/S0376-7388(00)80810-8
  14. Y. Bum, L. Ho, B. Park, J. Kie, S. Young, and M. Lee, "Synthesis and characterization of polyamideimide- branched siloxane and its gas-separation", J. Appl. Polym. Sci., 74, 965 (1993).
  15. M. Smaihi, J. Schrotter, C. Lesimple, I. Prevost, and C. Guizard, "Gas separation properties of hybrid imide-siloxane copolymers with various silica contents", J. Membr. Sci., 161, 157 (1999). https://doi.org/10.1016/S0376-7388(99)00103-9
  16. J. A. Barrie, M. J. L.Williams, and H. G. Spencer, "Gas transport in heterogeneous polymer blends. III. Alternating block copolymers of poly(bisphenol-a carbonate) and polydimethylsiloxane", J. Membr. Sci., 21, 185 (1984). https://doi.org/10.1016/S0376-7388(00)81553-7
  17. K. Madhavan and B. S. R. Reddy, "Poly(dimethylsiloxane- urethane) membranes: Effect of hard segment in urethane on gas transport properties", J. Membr. Sci., 283, 357 (2006). https://doi.org/10.1016/j.memsci.2006.07.005
  18. S. H. Yeon, S. H. Ahn, J. H. Kim, K. B. Lee, Y. Jeong, and S. U. Hong, "Synthesis and gas permeation properties of poly(vinyl chloride)-graftpoly(vinylpyrrolidone) membranes", Polym. Adv. Technol., 23, 516 (2012). https://doi.org/10.1002/pat.1907
  19. R. Senthilkumar, R. Rajini, and B. S. R. Reddy, "Gas permeation and sorption properties of nonionic and cationic amino-hydroxy functionalized poly(dimethylsiloxane) membranes", J. Membr. Sci., 254, 169 (2005). https://doi.org/10.1016/j.memsci.2004.12.045
  20. L. Hu. J. Cheng, Y. Li, J. Liu, J. Zhou, and K. Cen, "Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes", Appl. Surf. Sci., 413, 27 (2017). https://doi.org/10.1016/j.apsusc.2017.04.006
  21. M. Sadrzadeha, E. Salijoughia, K. Shahidia, and T. Mohammadia, "Preparation and characterization of a composite PDMS membrane on CA support", Polym. Adv. Technol., 21, 568 (2010).
  22. L. Hu. J. Cheng, Y. Li, J. Liu, J. Zhou, and K. Cen "In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for $CO_2$ separation", J. Colloid Interf. Sci., 510, 12 (2018). https://doi.org/10.1016/j.jcis.2017.09.048
  23. Paul A. Gurr, Joel M. P. Scofield, Jinguk Kim, Qiang Fu, Sandra E. Kentish, and Greg G. Qiao, "Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes", J. Polym. Sci. A: Polym. Chem., 52, 3372 (2014). https://doi.org/10.1002/pola.27401
  24. J. P. Jung, C. H. Park, J. H. Lee, Y. S. Bae, and J. H. Kim, "Room-temperature, one-pot process for $CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017). https://doi.org/10.1016/j.cej.2016.11.031
  25. S. J. Kim, J. P. Jung, C. H. Park, and J. H. Kim, "Olefin separation membranes based on PEO/PDMS-g-POEM blends containing $AgBF_4/Al(NO_3)_3$ mixed salts", Membr. J., 25, 496 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.496
  26. J. H. Lee, J. P. Jung. E. Jang, K. B. Lee, Y. J. Hwang, B. K. Min, and J. H. Kim, "PEDOT-PSS embedded comb copolymer membranes with improved $CO_2$ capture", J. Membr. Sci., 518, 21 (2016). https://doi.org/10.1016/j.memsci.2016.06.025
  27. H. Jeon, C. S. Lee, R. Patel, and J. H. Kim, "Well-organized meso-macroporous $SiO_2/SiO_2$ film derived from amphiphilic rubbery comb copolymer", ACS Appl. Mater. Interfaces, 7, 7767 (2015). https://doi.org/10.1021/acsami.5b01010
  28. S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multifunctional amphiphilic micelles for $CO_2$ capture", Chem. Sus. Chem., 8, 3783 (2015). https://doi.org/10.1002/cssc.201501063
  29. D. P. Queiroz and M. N. De Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes", Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056