DOI QR코드

DOI QR Code

Hydraulic Cleaning Effect on Fouling Mechanisms in Pressurized Membrane Water Treatment

가압식 멤브레인 수처리에서 수리학적 세정이 파울링 기작에 미치는 영향

  • Charfi, Amine (Department of Environmental Engineering, Inha University) ;
  • Jang, Hoseok (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2017.12.12
  • Accepted : 2017.12.21
  • Published : 2017.12.31

Abstract

Membrane fouling is the main issue hindering the expansion of low pressure membrane processes for surface water treatment. Therefore, applying periodic hydraulic cleaning for fouling control should be well optimized. Better understanding of membrane fouling associated with periodic hydraulic cleaning would be useful to optimize membrane cleaning strategies. By comparing experimental permeability data with the classical Hermia blocking laws, this study aims at analyzing membrane fouling and understanding dominant fouling mechanisms occurring when filtering a synthetic surface water solution with a pressurized membrane process during six filtration cycles of 30 min each, separated with cyclic cleaning of 1 min by backwashing and forward flushing separately and combined. When applying single cleaning technique, membrane fouling during the first cycles was controlled by complete blocking mechanism while the last cycles were dominated by cake formation. Nevertheless, when combining cleaning technique better membrane regeneration was obtained and fouling was mainly due to cake formation.

멤브레인 파울링은 지표수를 처리하는 저압 멤브레인 기술 적용의 확장에 있어 큰 장애가 된다. 따라서 파울링 제어를 위한 주기적인 수리학적 세정기술의 최적화는 매우 중요하다. 주기적인 수리학적 세정과 이와 연관된 파울링 현상에 관한 올바른 이해는 멤브레인 세정 전략을 최적화하기 위해 매우 유용할 수 있다. 실험적으로 측정한 투과도와 전통적인 Hermia 파울링 모델 예측 치의 비교를 통해, 본 연구에서는 합성 탁도유발 시료를 처리하는 가압식 멤브레인 공정에서 30분 여과와 정세정/역세정이 포함된 1분 세정조건을 바탕으로 6번의 운전사이클을 통해 발생하는 파울링 현상을 분석하고 이를 통해 지배적인 파울링 기작을 정량적으로 이해하고자 하였다. 단독 세정에서, 첫 번째 운전사이클에서 발생하는 파울링은 완전공극막힘 현상에 의해 주로 지배되었고 마지막 운전 사이클에서는 케이크 형성이 지배적인 파울링 기작으로 관찰되었다. 정세정과 역세정이 혼합된 경우, 파울링 속도는 감소하였으나 전반적으로 케이크 형성이 주 파울링 기작으로 관찰되었다.

Keywords

References

  1. J. G. Jacangelo, S. S. Adham, and J. M. Laine, "Mechanism of cryptosporidium, giardia and Ms2 virus removal by MF and UF", J. Am. Water Works Ass., 87, 107 (1995). https://doi.org/10.1002/j.1551-8833.1995.tb06427.x
  2. S. Xia, J. Nan, R. Liu, and G. Li, "Study of drinking water treatment by ultrafiltration of surface water and its application to China", Desalination, 170, 41 (2004). https://doi.org/10.1016/j.desal.2004.03.014
  3. K. J. Howe and M. M. Clark, "Fouling of microfiltration and ultrafiltration membarnes by natural waters", Environ. Sci. Technol., 36, 3571 (2002). https://doi.org/10.1021/es025587r
  4. N. H. Lee, G. Amy, and J. P. Croue, "Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter", Water Res., 40, 2357 (2006). https://doi.org/10.1016/j.watres.2006.04.023
  5. M. Zupancic, D. Novak, J. Diaci, and I. Golobic, "An evaluation of industrial ultrafiltration systems for surface water using fouling indices as a performance indicator", Desalination, 344, 321 (2014). https://doi.org/10.1016/j.desal.2014.04.002
  6. R. H. Peiris, M. Jaklewicz, H. Budman, R. L. Legge, and C. Moresoli, "Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems", Water res., 47, 3364 (2013). https://doi.org/10.1016/j.watres.2013.03.015
  7. K. Kimura, K. Tanaka, and Y. Watanabe, "Microfiltration of different surface waters with/without coagulation: Clear correlations between membrane fouling and hydrophilic biopolymers", Water res., 49, 434 (2014). https://doi.org/10.1016/j.watres.2013.10.030
  8. P. A. Oka, N. Khadem, and P. R. Berube, "Operation of passive membrane systems for drinking water treatment", Water Res., 115, 287 (2017). https://doi.org/10.1016/j.watres.2017.02.065
  9. J. Huang, L. Liu, G. Zeng, X. Li, L. Peng, F. Li, Y. Jiang, Y. Zhao, and X. Huang, "Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration", Desalination, 335, 1 (2014). https://doi.org/10.1016/j.desal.2013.11.038
  10. J. P. Chen, J, S. L. Kim, and Y. P. Ting, "Optimization of membrane physical and chemical cleaning by a statistically designed approach", J. Membr. Sci., 219, 27 (2003). https://doi.org/10.1016/S0376-7388(03)00174-1
  11. M. Kennedy, S. M. Kim, I. Mutenyo, L. Broens, and J. Schippers, "Intermittent crossflushing of hollow fiber ultrafiltration systems", Desalination, 118, 175 (1998). https://doi.org/10.1016/S0011-9164(98)00121-0
  12. X. Shi, G. Tal, N. P. Hankins, and V. Gitis, "Fouling and cleaning of ultrafiltration membrane", J. Water Proc. Eng., 1, 121 (2014). https://doi.org/10.1016/j.jwpe.2014.04.003
  13. H. Lin and P. R. Berube, "Modelling the impact of permeate flux and hydrodynamic conditions on fouling in submerged hollow fiber membranes", Water Sci. Technol., 7, 111 (2007).
  14. A. Charfi, H. Jang, and J. Kim, "Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination", Bioresour. Technol., 240, 106 (2017). https://doi.org/10.1016/j.biortech.2017.02.086
  15. J. Hermia, "Constant pressure blocking filtration law application to powder-law non Newtonian fluid", Trans. Inst. Chem. Eng., 60, 183 (1982).
  16. H. Chang, B. Liu, H. Liang, H. Yu, S. Shao, and G. Li, "Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane", Chemosphere, 179, 254 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.122
  17. M. Schulz, A. Soltani, X. Zheng, and M. Ernst, "Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM)", J. Membr. Sci., 507, 154 (2016). https://doi.org/10.1016/j.memsci.2016.02.008
  18. S. G. J. Heijman, M. D. Kennedy, and G. J. Van Hek, "Heterogenous fouling in dead-end ultrafiltration", Desalination, 178, 295 (2005). https://doi.org/10.1016/j.desal.2004.12.019