DOI QR코드

DOI QR Code

Preparation and Gas Characterization of Poly(phenylene oxide) Containing Imidazolium

이미다졸륨을 포함하는 폴리페닐렌옥사이드 고분자 제조 및 기체 특성평가

  • Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Jo, Jin Woo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Ji Hyeon (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Tae Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Tocci, Elena (Research Institute for Membrane Technology ITM-CNR, University of Calabria) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 손태양 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 조진우 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 김지현 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 김태현 (인천대학교 화학과) ;
  • ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.12.27
  • Accepted : 2017.12.31
  • Published : 2017.12.31

Abstract

In this study, halogen element was introduced into polyphenylene oxide polymer using bromination reaction, and then halogen element was replaced with imidazolium. Imidazolium corporated polyphenylene oxide polymer was synthesized and the synthesis was confirmed by various instrumental characterization. In addition, gas permeation properties of $O_2$, $N_2$, $CO_2$ were studied with different imidazolium contents. As the content of imidazolium increased, the ion exchange capacity increased and the mechanical strength decreased. The gas permeance showed a tendency to decrease slightly with increaing imidazolium contents. Whereas, it was confirmed that the tendency of $CO_2/N_2$ ideal selectivity increased as the imidazolium contents increased.

본 연구에서는 폴리페닐렌옥사이드 고분자에 브롬화반응을 통해서 할로겐 원소를 수월하게 도입하고, 도입한 할로겐 원소를 이미다졸륨으로 치환하여 이미다졸륨이 도입된폴리페닐렌옥사이드를 합성하였다. 다양한 특성평가를 통해서 합성이 이루어졌음을 확인하였고, 산소, 질소, 이산화탄소 기체투과 특성평가를 진행하여 합성한 고분자의 기체특성을 확인하였다. 이미다졸륨의 함량이 증가할수록 합성고분자의 이온교환용량이 증가하였으나, 기계적 강도는 감소하였다. 특히, 기체투과도는 미세하지만 감소하는 경향을 나타내었으며, 이산화탄소/질소 선택도의 경우 이미다졸륨 함량이 높아질수록 증가하는 경향을 확인할 수 있었다.

Keywords

References

  1. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membrane for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  2. S. J. Kim, H. E. Kim, W. J. Cho, and S. Y. Ha, "Membrane process development for $CO_2$ separation of flaring gas", Membr. J., 23, 384 (2013).
  3. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223
  4. H. J. Lee, M. J. Koh, D. J. Kim, and S. Y. Nam, "Effect of non-ionic additive on morphology and gas permeation properties of polysulfone hollow fiber membrane", Membr. J., 22, 224 (2012).
  5. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  6. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
  7. H. K. Lee and M. J. Kang, "Gas separation properties of poly(ethylene oxide) and poly(ethylene-co-vinyl acetate) blended membranes", Membr. J., 27, 147 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.147
  8. S. R. Park, H. S. Ahn, and J. H. Kim, "Preparation of asymmetric PES hollow fiber gas separation membranes and their $CO_2/CH_4$ separation properties", Membr. J., 21, 367 (2011).
  9. T. A. Barbari and S. S. Datwani, "Gas separation properties of polysulfone membranes treated with molecular bromine", J. Membr. Sci., 107, 263 (1995). https://doi.org/10.1016/0376-7388(95)00122-0
  10. P. K. Gantzel and U. Merten, "Gas separations with high-flux cellulose acetate membranes", Ind. Eng. Chem. Process. Des. Dev., 9, 331 (1970). https://doi.org/10.1021/i260034a028
  11. D. Sen and H. kalipcilar, "Gas separation performance of polycarbonate membranes modified with multifunctional low molecular-weight additives", Sep. Sci. Technol., 41, 1813 (2006). https://doi.org/10.1080/01496390600735256
  12. D. J. Kim and S. Y. Nam, "Research and development trends of polyimide based material for gas separation", J. Membr. Sci., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  13. H. B. Park and B. D. Freeman, "Gas separation properties and their applications of high permeable amorphous perfluoropolymer membranes", Membr. J., 17, 81 (2007).
  14. D. H. Shin and J. W. Rhim, "Gas permeation properties of aminated polyphenylene oxide membranes", Membr. J., 25, 488 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.488
  15. B. S. Lee, D. H. Kim, and J. W. Rhim, "Studies on the gas permeation behaviors using the surface fluorinated poly(phenylene oxide) membranes", Membr. J., 20, 106 (2010).
  16. T. Sakaguchi, K. Kameoka, and T. Hashimoto, "Synthesis of sulfonated poly(diphenylacetylene)s with high $CO_2$ permselectivity", J. Polym. Sci., Part A: Polym. Chem., 47, 6463 (2009). https://doi.org/10.1002/pola.23687
  17. T. Y. Son, D. H. Choi, C. H. Park, and S. Y. Nam, "Preparation and electrochemical characterization of membranes using submicron sized particles with high ion exchange capacity for electroadsorptive deionization", J. Nanosci. Nanotechnol., 17, 7743 (2017). https://doi.org/10.1166/jnn.2017.14799
  18. B. A. Langowski and K. E. Uhrich, "Microscale plasma-initiated patterning", Langmuir, 21, 10509 (2005). https://doi.org/10.1021/la052222m
  19. W. Hellmich, J. Regtmeier, T. T. Duong, R. Ros, D. Anselmetti, and A. Ros, "Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels", Langmuir, 21, 7551 (2005). https://doi.org/10.1021/la0510432
  20. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. Lo, "UV/ozone modification of poly(dimethylsiloxane) microfluidic channels", Sens. Actuators B: Chem., 97, 402 (2004). https://doi.org/10.1016/j.snb.2003.09.022
  21. C. Pugh and V. Percec, "Miscible blends from poly(2,6-dimethyl-1,4-phenylene oxide) and poly (epichlorohydrin) containing pendant electron-donor and electron-acceptor groups", Macromolecules, 19, 65 (1986). https://doi.org/10.1021/ma00155a012
  22. J. Wang, H. Wei, S. Yang, H. Fang, P. Xu, and Y. Ding, "Constructing pendant imidazolium-based poly(phenylene oxide)s for anion exchange membranes using a click reaction", RSC Adv., 5, 93415 (2015). https://doi.org/10.1039/C5RA17748K
  23. B. J. Gye, I. kammakakam, H. L. You, S. Y. Nam, and T. H. Kim, "PEG-imidazolium-incorporated polyimides as high-performance $CO_2$-selective polymer membranes: The effects of PEG-imidazolium content", Sep. Purif. Technol., 179, 283 (2017). https://doi.org/10.1016/j.seppur.2017.02.020