DOI QR코드

DOI QR Code

리그노셀룰로오스 나노피브릴의 분무건조 및 건조물의 특성

Spray Drying of Lignocellulose Nanofibril (LCNF) and Characterization of Spray-dried LCNF

  • 박찬우 (강원대학교 산림바이오소재공학과) ;
  • 한송이 (강원대학교 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림바이오소재공학과)
  • Park, Chan-Woo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Han, Song-Yi (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 투고 : 2017.03.03
  • 심사 : 2017.04.18
  • 발행 : 2017.05.25

초록

본 연구에서는 분무건조 조건 및 계면활성제 첨가에 따른 리그노셀룰로오스 나노피브릴(lignocellulose nanofibril, LCNF)의 분무건조 수율 및 건조 LCNF의 형태학적 특성, 치수분포 및 수재분산성을 조사하였다. 원료로는 약 70-300 nm 직경을 지니는 섬유상의 LCNF를 사용하였으며, 분무건조 LCNF는 rod형 파티클의 형태학적 특성을 보였다. $140^{\circ}C$ 온도조건에서의 분무건조 수율이 가장 높았으며, 분무건조 LCNF의 입자크기 또한 가장 작았다. LCNF 현탁액의 농도가 감소할수록 또한 송풍량이 증가할수록 분무건조 수율 및 입자크기가 증가하였다. 또한, 계면활성제의 첨가로 건조 수율을 향상시킬 수 있었으며, 첨가 비율이 증가할수록 평균입자크기가 감소하였다. 건조 LCNF의 입자 크기가 감소할수록, 물에서의 재분산성이 향상되었으며, 수현탁액의 여수시간이 증가하였다.

In this study, the effect of spray-drying conditions and surfactant addition on the spray-drying yield, morphological characterization, size distribution and re-dispersity in water of spray-dried lignocellulose nanofibril (LCNF) were investigated. The freeze-dried LCNF after solvent exchange had linear fiber morphology with a diameter of 70-300 nm, and the spray-dried LCNF showed rod-like particle morphology. The spray-drying yield and particle size of spary-dried LCNF at $140^{\circ}C$ was highest and smallest, respectively. As LCNF concentration and blowing rate decreased and increased, respectively, the spray-drying yield and particle size were increased. The highest spray-drying yield was found at distearyl dimethyl ammonium chloride (DDAC) addition of 10 phr at $140^{\circ}C$. As the particle size decreased and the DDAC content increased, filtration time of spray-dried LCNF in water was decreased and increased, respectively.

키워드

참고문헌

  1. Amin, M.C.I.M., Abadi, A.G., Kates, H. 2014. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carboydrate Polymers 99: 180-189. https://doi.org/10.1016/j.carbpol.2013.08.041
  2. Cal, K. and Sollohub, K. 2010. Spray drying technique. I: Hardware and process parameters. Journal of pharmaceutical sciences 99(2): 575-586. https://doi.org/10.1002/jps.21886
  3. Eyholzer, C., Bordeanu, N., Lopez-Suevos, F., Rentsch, D., Zimmermann, T., Oksman, K. 2010. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1): 19-30. https://doi.org/10.1007/s10570-009-9372-3
  4. Gardner D.J., Oporto, G.S., Mills, R., Samir, M.A.S.A. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22: 545-567. https://doi.org/10.1163/156856108X295509
  5. Iwamoto, S., Abe, K., Yano, H. 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9: 1022-1026. https://doi.org/10.1021/bm701157n
  6. Park, C.W., Han, S.Y., Namgung, H.W., Seo, P.N., Lee, S.H. 2017. Effect of spray-drying condition and surfactant addition on morphological characteristics of spray-dried nanocellulose. Journal of Forest and Environmental Science 33(1): 33-38. https://doi.org/10.7747/JFES.2017.33.1.33
  7. Peng, Y., Gardner D.J., Han, Y. 2012a. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19: 91-102. https://doi.org/10.1007/s10570-011-9630-z
  8. Peng, Y., Han, Y., Gardner D.J. 2012b, Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood and Fiber Science 44: 1-14.
  9. Peng, Y., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z., Tshabalala, M.A. 2013. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5): 2379-2392. https://doi.org/10.1007/s10570-013-0019-z
  10. Sosnik, A. and Seremeta, K.P. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in colloid and interface science 223: 40-54. https://doi.org/10.1016/j.cis.2015.05.003
  11. Walton, D.E. and Mumford, C.J. 1999. Spray dried products-characterization of particle morphology. Chemical Engineering Research and Design 77(1): 21-38. https://doi.org/10.1205/026387699525846