DOI QR코드

DOI QR Code

A comparison of community structure and denitrifying ratio for denitrifying bacteria dependent on agricultural methods and seasons

농법과 계절에 따른 탈질세균의 군집 구조와 탈질율 비교

  • Yoon, Jun-Beom (Department of Biological Science and Biotechnology, Hannam University) ;
  • Park, Kyeong Ryang (Department of Biological Science and Biotechnology, Hannam University)
  • 윤준범 (한남대학교 대덕밸리캠퍼스 생명시스템과학과) ;
  • 박경량 (한남대학교 대덕밸리캠퍼스 생명시스템과학과)
  • Received : 2017.01.24
  • Accepted : 2017.03.21
  • Published : 2017.03.31

Abstract

We studied soil composition, $N_2O$ production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of $N_2O$ production, the amount of $N_2O$ production was high in May and November soils, but the rate of $N_2O$ production was fast in August soil. The average number of denitrifying bacteria were $1.32{\times}10^4MPN{\cdot}g^{-1}$ in the organic farming soil, $1.17{\times}10^4MPN{\cdot}g^{-1}$ in the emptiness farming soil, and $6.29{\times}10^3MPN{\cdot}g^{-1}$ in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.

농법에 따른 토양성분과 $N_2O$ 발생량, 탈질세균 수, 탈질세균의 군집 구조와 T-RFLP 패턴을 계절별로 조사하였다. 토양성분 분석결과 총 탄소량과 총 유기탄소량은 유기농법에서 각각 1.57%, 1.28%, 무농약 농법은 1.52%, 1.24%, 관행농법은 1.40%, 0.95%로 친환경농법에서 유기 탄소량이 비교적 높게 나타났다. $N_2O$ 발생량은 5월과 11월 토양이 높았지만 속도는 8월 토양이 빨랐다. 탈질세균 수는 유기농토양은 평균 $1.32{\times}10^4MPN/g$,무농약 토양은 평균 $1.17{\times}10^4MPN/g$, 관행농 토양은 평균 $6.29{\times}10^3MPN/g$으로 친환경농법 토양이 관행농법 토양에 비해 탈질세균 수가 많은 것을 확인하였다. 계통수 분석 결과, 전체 10개 Cluster 중 유기농법 토양이 6개의 Cluster에 분포되어 친환경 농법 토양이 다양한 군집을 갖는 것을 확인하였다. T-RFLP 패턴의 PCA profile 분석 결과, 유기농법은 넓은 분포를, 관행농법은 좁은 범위의 분포를 나타내고, 무농약농법은 유기농법과 관행농법의 중간에 분포하는 것으로 확인되었다. 따라서 계절과 농법에 따라 탈질세균의 분포와 군집구조가 달라지는 것을 확인하였다.

Keywords

References

  1. Balderston, W.L., Sherr, B., and Payne, W.J. 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31, 504-508.
  2. Braker, G., Fesefeldt, A., and Witzel, K.P. 1998. Development of PCR primer systems for amplification of nitrate reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769-3775.
  3. Chauhan, A., Ogram, A., and Reddy, K.R. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida everglades. Appl. Environ. Microbiol. 70, 3475-3484. https://doi.org/10.1128/AEM.70.6.3475-3484.2004
  4. Crutzen, P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In Delwiche, C.C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide, Wiley, New York, USA.
  5. Foster, S.S.D. and Young, C.P. 1980. Groundwater contamination due to agricultural land-use practices in the United Kingdom. UNESCO. S. R. Hydrol. 30, 268-282.
  6. Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., and Sutton, M.A. 2008. Transformation of the N: recent trends, questions and potential solutions. Science 320, 889-892. https://doi.org/10.1126/science.1136674
  7. Hoewyk, D.V., Groffaman, P.M., Kiviat, E., Mihocko, G., and Stevens, G. 2000. Soil nitrogen dynamics in organic and mineral soil calcareous wetlands in Eastern New York. Soil Sci. Soc. 64, 2168-2173. https://doi.org/10.2136/sssaj2000.6462168x
  8. Hong, Z., Hanaki, K., and Matsuo, T. 1993. Greenhouse gas $N_2O$ production during denitrification in wastewater treatment. Water Sci. Technol. 28, 203-207.
  9. Jahangir, M.M.R., Johnston, P., Barrett, M., Khalil, M.I., Groffman, P.M., Boeckx, P., and Richards, K.G. 2013. Denitrification and indirect $N_2O$ emissions in groundwater: hydrologic and biogeochemical influences. J. Contam. Hydrol. 152, 70-81. https://doi.org/10.1016/j.jconhyd.2013.06.007
  10. Jarvis, S.C. 2000. Progress in studies of nitrate leaching from grassland soils. Soil Use Manag. 16, 152-156.
  11. Kim, M.S., Kim, Y.H., Kang, S.S., Yun, H.B., and Hyun, B.K. 2012. Long-term application effects of fertilizers and amendments on changes of soil organic carbon in paddy soil. Korea J. Soil Sci. 45, 1108-1113. https://doi.org/10.7745/KJSSF.2012.45.6.1108
  12. Liu, X., Tiquia1, S.M., Holguin1, G., Wu1, L., Nold, S.C., Devol A.H., Luo, K., Palumbol, A.V., Tiedje, J.M., and Zhou1, J. 2003. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone off the pacific coast of Mexico. Appl. Environ. Microbiol. 69, 3549-3560. https://doi.org/10.1128/AEM.69.6.3549-3560.2003
  13. Park, M.A. and Chang, N.K. 1994. Mineral nutrient and productivity of three grasslands in Kimhwa. Kor. Turfgrass Sci. 8, 29-36.
  14. Payne, W.J. 1973. Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37, 409-452.
  15. Scherson, Y.D., Wells, G.F., Woo, S.G., Lee, J., Park, J., Cantwell, B.J., and Criddle, C.S. 2013. Nitrogen removal with energy recover through $N_2O$ decomposition. Energy Environ. Sci. 6, 241-248. https://doi.org/10.1039/C2EE22487A
  16. Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, G., Jetten, M.S.M., and Strous, M. 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 27, 481-492. https://doi.org/10.1016/S0168-6445(03)00039-1
  17. Smith, J.M. and Ogram, A. 2008. Genetic and functional variation in denitrifier populations along short-term restoration chronosequence. Appl. Environ. Microbiol. 74, 5615-5620. https://doi.org/10.1128/AEM.00349-08
  18. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. 2007. Atmosphic surface and climate change 2007. In Kevin, E.T. and Philip, D.J. (eds.), Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA.
  19. Song, K.Y. and Kang, H.J. 2005. Nutrient removal efficiencies in marsh- and pond- type wetland Microcosms. J. Korean Wetlands Society 7, 43-50.
  20. Staley, J.T., Bryant, M.P., Pfennig, N., and Holt, J.G. 1989. Nitrifying bacteria. In Watson, S.W., Bock, E., Harms, H., Koops, H., and Hooper, A.B. (eds.), Bergey's Manual of Systematic Bacteriology. The Williams and Wilkins Co., Baltimore, Maryland, USA.
  21. Stark, C.H. and Richards, K.G. 2008. The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dynamic Soil Dynamic Plant 2, 1-12.
  22. Swift, M.J. 1982. Microbial succession during the decay of organic matter. In Burns, R.G. and Slater, J.H. (eds.), Experimental Microbial Ecology, Blackwell, Oxford, UK.
  23. Tamura, K., Stecher, G., and Kumar S. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  24. Thomas, N.G., Michael, R.B., and James, M.T. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33, 426-939.
  25. Tiedje, J.M. 1982. Denitrification. In Miller, R.H. and Keeney, D.R. (eds.), Methods of Soil Analysis, part 2. American Society of Agronomy, Wisconsin, USA.
  26. Wassmann, R. and Aulakh, M.S. 2000. The role of rice plants in regulating mechanisms of methane missions (review). Biol. Fertil. Soils 31, 20-29. https://doi.org/10.1007/s003740050619
  27. Wind, T. and Conrad, R. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochem 37, 253-278. https://doi.org/10.1023/A:1005760506957