DOI QR코드

DOI QR Code

Effects of Heat Treatments on Physicochemical Properties and In Vitro Biological Activities of Quinoa (Chenopodium quinoa Willd.)

퀴노아의 열처리 가공에 따른 이화학적 특성 및 In Vitro 생리활성

  • Goh, Hye-Kyung (Department of Food Science and Biotechnology, Gachon University) ;
  • Lee, Young-Tack (Department of Food Science and Biotechnology, Gachon University)
  • 고혜경 (가천대학교 식품생물공학과) ;
  • 이영택 (가천대학교 식품생물공학과)
  • Received : 2017.02.22
  • Accepted : 2017.05.18
  • Published : 2017.06.30

Abstract

The effects of heat treatments on the physicochemical properties and in vitro biological activities of quinoa (Chenopodium quinoa Willd.) were investigated. Quinoa grains were subjected to two different heat treatment methods: boiling and steaming plus roasting (steaming/roasting). Compared with raw quinoa, boiled quinoa samples had slightly lower crude protein, crude fat, crude ash, and starch contents. However, steaming/roasting treatment did not cause significant differences in proximate composition. Heat treatments reduced total phenolic and flavonoid contents in quinoa extracts, and higher reduction was detected upon boiling treatment. Heat treatments also reduced lightness and increased yellowness of quinoa samples. Heat treatments increased water absorption index but decreased water solubility index. In vitro starch hydrolysis increased substantially after both heat treatments, and slightly higher values were observed in the boiled quinoa samples. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activity and nitrite scavenging activity were reduced by heat treatments, and the boiled quinoa sample showed the lowest activity likely due to loss of activities in cooking water.

퀴노아의 열처리 가공방법이 퀴노아의 이화학적 특성과 in vitro 생리활성에 미치는 영향을 조사하였다. 퀴노아의 가열처리로 열탕처리와 증자 후 볶음처리 하는 두 가지 방법을 사용하였다. 퀴노아의 일반성분은 열탕처리 하였을 때 조단백질, 조지방, 조회분, 전분 함량이 약간 감소하였으나 증자/볶음처리 시에는 이들 함량에 유의적인 차이가 없었다. 퀴노아의 총 페놀 함량은 증류수 또는 80% 에탄올 용매 추출물 모두에서 원곡보다 가열처리에 의해 감소하는 것으로 나타났는데 열탕처리가 증자/볶음처리에 비해 감소가 더 큰 편이었다. 총 플라보노이드 함량 또한 두 가지 용매 추출물 모두에서 열처리 가공에 의해 감소하였다. 열처리한 퀴노아의 수분흡수지수는 원곡보다 증가했지만 수분용해도지수는 감소하였다. 퀴노아의 in vitro 전분 가수분해율은 원곡보다 열처리한 퀴노아에서 크게 증가하였다. 퀴노아의 DPPH 라디칼 소거능과 아질산염 소거능은 가열처리에 의해 감소하는 경향이었는데 열탕 처리에서 가장 낮게 나타났으며, 이는 열처리 가공방법에 따른 항산화 물질 손실의 차이로 인한 결과로 판단되었다. 퀴노아를 열처리 가공 시에는 조리수에 의한 영양 생리활성 성분의 손실을 줄이는 방법으로 열처리 가공하는 것이 바람직한 것으로 제시되었다.

Keywords

References

  1. Jacobsen SE. 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19: 167-177. https://doi.org/10.1081/FRI-120018883
  2. Taylor JRN, Parker ML. 2002. Quinoa. In Pseudocereals and Less Common Cereals. Springer-Verlag, Berlin, Germany. p 93-122.
  3. Lee JH. 2007. New beneficial crops amaranth and quinoa for food nutritional source. Food Industry and Nutrition 12(2): 29-36.
  4. Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90: 2541-2547. https://doi.org/10.1002/jsfa.4158
  5. Ando H, Chen YC, Tang H, Shimizu M, Watanabe K, Mitsunaga T. 2002. Food components in fractions of quinoa seed. Food Sci Technol Res 8: 80-84. https://doi.org/10.3136/fstr.8.80
  6. Prego I, Maldonado S, Otegui M. 1998. Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82: 481-488. https://doi.org/10.1006/anbo.1998.0704
  7. Abugoch James LE. 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58: 1-31.
  8. Koziol MJ. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compos Anal 5: 35-68. https://doi.org/10.1016/0889-1575(92)90006-6
  9. Alvarez-Jubete L, Arendt EK, Gallagher E. 2010. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21: 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
  10. Konishi Y, Hirano S, Tsuboi H, Wada M. 2004. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 68: 231-234. https://doi.org/10.1271/bbb.68.231
  11. Ryan E, Galvin K, O'Connor TP, Maguire AR, O'Brien NM. 2007. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legume. Plant Foods Hum Nutr 62: 85-91. https://doi.org/10.1007/s11130-007-0046-8
  12. Hirose Y, Fujita T, Ishii T, Ueno N. 2010. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119: 1300-1306. https://doi.org/10.1016/j.foodchem.2009.09.008
  13. Ridout CL, Price KR, Susan Dupont M, Parker ML, Fenwick GR. 1991. Quinoa saponins-analysis and preliminary investigations into the effects of reduction by processing. J Sci Food Agric 54: 165-176. https://doi.org/10.1002/jsfa.2740540202
  14. Kim AN. 2016. A study on the quinoa by different preparation methods and its application to food. PhD Dissertation. Kyung Hee University, Seoul, Korea.
  15. AACC. 2000. Approved methods of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA.
  16. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  17. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  18. Anderson RA. 1982. Water absorption and solubility and amylograph characteristics of roll-cooked small grain products. Cereal Chem 59: 265-269.
  19. Xue Q, Newman RK, Newman CW. 1996. Effects of heat treatment of barley starches on in vitro digestibility and glucose responses in rats. Cereal Chem 73: 588-592.
  20. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  21. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338.
  22. Hager AS, Wolter A, Jacob F, Zannini E, Arendt EK. 2012. Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56: 239-247. https://doi.org/10.1016/j.jcs.2012.06.005
  23. Repo-Carrasco-Valencia RAM, Encina CR, Binaghi MJ, Greco CB, Ronayne de Ferrer PA. 2010. Effects of roasting and boiling of quinoa, kiwicha and kañiwa on composition and availability of minerals in vitro. J Sci Food Agric 90: 2068-2073.
  24. Steffolani ME, Leon AE, Perez GT. 2013. Study of the physicochemical and functional characterization of quinoa and kaniwa starches. Starch 65: 976-983. https://doi.org/10.1002/star.201200286
  25. Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen SE, Milovanovic M. 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55: 132-138. https://doi.org/10.1016/j.jcs.2011.10.010
  26. Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119: 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
  27. Carciochi RA, Manrique GD, Dimitrov K. 2014. Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). Int Food Res J 21: 767-773.
  28. Dini I, Tenore GC, Dini A. 2010. Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT-Food Sci Technol 43: 447-451. https://doi.org/10.1016/j.lwt.2009.09.010
  29. Hemalatha P, Bomzan DP, Rao BVS, Sreerama YN. 2016. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on $\alpha$-amylase and $\alpha$-glucosidase activities. Food Chem 199: 330-338. https://doi.org/10.1016/j.foodchem.2015.12.025
  30. Gorinstein S, Vargas OJM, Jaramillo NO, Salas IA, Ayala ALM, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S. 2007. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225: 321-328. https://doi.org/10.1007/s00217-006-0417-7
  31. Snow P, O'Dea K. 1981. Factors affecting the rate of hydrolysis of starch in food. Am J Clin Nutr 34: 2721-2727. https://doi.org/10.1093/ajcn/34.12.2721
  32. Nickel J, Spanier LP, Botelho FT, Gularte MA, Helbig E. 2016. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chem 209: 139-143. https://doi.org/10.1016/j.foodchem.2016.04.031
  33. Nsimba RY, Kikuzaki H, Konishi Y. 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106: 760-766. https://doi.org/10.1016/j.foodchem.2007.06.004
  34. Im KJ, Lee SK, Park DK, Rhee MS, Lee SK. 2000. Inhibitory effects of garlic extracts on the nitrosation. J Korean Soc Agric Chem Biotechnol 43: 110-115.