DOI QR코드

DOI QR Code

Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins

  • Liu, Juan (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Xu, Yangrong (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Yang, Jingjing (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Wang, Wenzhi (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Zhang, Jianqiang (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Zhang, Renmei (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Meng, Qingguo (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University)
  • Received : 2016.09.10
  • Accepted : 2017.01.02
  • Published : 2017.07.15

Abstract

Ocotillol-type saponins are one kind of tetracyclic triterpenoids, sharing a tetrahydrofuran ring. Natural ocotillol-type saponins have been discovered in Panax quinquefolius L., Panax japonicus, Hana mina, and Vietnamese ginseng. In recent years, the semisynthesis of 20(S/R)-ocotillol-type saponins has been reported. The biological activities of ocotillol-type saponins include neuroprotective effect, antimyocardial ischemia, antiinflammatory, antibacterial, and antitumor activities. Owing to their chemical structure, pharmacological actions, and the stereoselective activity on antimyocardial ischemia, ocotillol-type saponins are subjected to extensive consideration. In this review, we sum up the discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins.

Keywords

References

  1. Yao H, Li X, Liu Y, Wu Q, Jin Y. An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L. J Ginseng Res 2016;40:415-22. https://doi.org/10.1016/j.jgr.2016.06.007
  2. Li YX, Liu SF, Wang XN. Psedoginsenoside F11dan outstanding symbol to distinguish ginseng (Panax ginseng) from American ginseng (P. quinquefolius). Chin Tradit Herbal Drugs 1995;26:540-1.
  3. Tanaka O, Yahara S. Dammarane saponins of leaves of Panax psuedo-ginseng subsp. himalaicus. Phytochemistry 1978;17:1353-8. https://doi.org/10.1016/S0031-9422(00)94588-6
  4. Chen SE, Staba EJ, Taniyasu S, Kasai SR, Tanaka O. Further study on dammarane-saponins of leaves and stems of American ginseng, Panax quinquefolium. Planta Med 1981;42:406-11. https://doi.org/10.1055/s-2007-971664
  5. Toshinobu M, Kong YC, Paul PB, Ng KH, Yip TT, Ryoji K, Osamu T. Saponins of plants of Panax species collected in central Nepal and their chemotaxonomical significance: II. Chem Pharm Bull 1986;34:4368-72. https://doi.org/10.1248/cpb.34.4368
  6. Ma SG, Jiang YT, Song SJ, Wang ZH, Bai J, Xu SX, Liu K. Alkaline-degradation products of ginsenosides from leaves and stems of Panax quinquefolium. Acta Pharm Sin 2005;40:924-30.
  7. Li PY. Semi synthetic approach intends to ginsenoside PF11. CN1015194192008, 2.
  8. Tian X. Studies on ocotillol-type ginsenoside and its related compounds. MS thesis. Jilin: Jilin University; 2012 [in Chinese].
  9. Liu JP, Wang F, Li PY, Lu D. A new ocotillol-type triterpenoid saponin from red American ginseng. Nat Prod Res 2012;26:731-5. https://doi.org/10.1080/14786419.2010.551644
  10. Osamu T, Toshinobu M, Ryoji K, Junko K, Shuichi S, Yoshiteru I, Junzo S. Study on saponins of rhizomes of panax psedo-ginseng subsp. Himalaicus collected at Tzatogang and Parila, Bhutan-Himalaya. Chem Pharm Bull 1985;33:2323-30. https://doi.org/10.1248/cpb.33.2323
  11. Ma XY, Shao CJ, Xu JD. The chemical study on Panax quinquefolium saponinsdisolation and structural identification of Pseudoginsenoside-RT5. Gin Res 1991;4:9-15 [in Chinese].
  12. Wang CC. Studies on the structural modification of psedo-ginsenoside-F11. MS thesis. Jilin: Jilin University; 2011 [in Chinese].
  13. Nguyen MD, Nguyen TN, Ryoji K, Aiko I, Kazuo Y, Osamu T. Saponins from Vietnamese ginseng, Panax vietnamensis Ha et Grushv. Collected in central Vietnam: I. Chem Pharm Bull 1993;41:2010-4. https://doi.org/10.1248/cpb.41.2010
  14. Zou K, Zhu S, Chihiro T, Cai SQ, Katsuko K. Dammarane-type riterpene saponins from panax japonicus. J Nat Prod 2002;65:346-51. https://doi.org/10.1021/np010354j
  15. Nguyen MD, Ryoji K, Kazuhiro O, Aiko I, Nguyen TN, Kazuo Y, Osamu T. Saponins from vietnamese ginseng, panax vietnamensis Ha et Grushv. Collected in central Vietnam: II. Chem Pharm Bull 1994;42:115-22. https://doi.org/10.1248/cpb.42.115
  16. Toshinobu M, Ryoji K, Osamu T, Zhou J, Yang TR, Junzo S. Saponins of zutziseng, rhizomes of panax japonicus C.A. Meyer var. major (Burk.) C.Y. Wu et K.M. Feng, collected in Yunnan, China. Chem Pharm Bull 1982;30:4341-6. https://doi.org/10.1248/cpb.30.4341
  17. Tsuneo N, Katsumichi M, Toshinobu M, Osamu T. Saponins of plants of panax species collected in central Nepal and their chemotaxonomical significance: I. Chem Pharm Bull 1986;34:730-8. https://doi.org/10.1248/cpb.34.730
  18. Han L, Lin MY, Zheng Q, Liu HY, Liu HY, Dong G, Liu JP, Li PY. A new epimer of ocotillol from stems and leaves of American ginseng. Nat Prod Res 2014;28:935-9. https://doi.org/10.1080/14786419.2014.896008
  19. Li XG, Zhang LX, Meng XY, Hou JR, Zhang J. Isolation, identification and content determination of pseudoginsenoside F11 in American ginseng. J Jilin Agric Univ 2006;27:645-8.
  20. Ivan V, Timothy FJ. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew Chem Int Ed Engl 2009;48:5250-81. https://doi.org/10.1002/anie.200900600
  21. Ulrich K, Holger W, Matthias S. An enantiomerically pure epoxy organolithium reagent for the synthesis of Oligo (tetrahydrofurans) by an epoxidecascade reaction. Tetrahedron Lett 1994;35:7629-32. https://doi.org/10.1016/S0040-4039(00)78360-2
  22. Kassoum N, Michel B, Chantal Z, Liliane G, Joel J. Lactonisation and lactone ether formation of nerol geraniol compounds. Use of $^{13}C$ to identify the cyclisation process. Tetrahedron 1999;55:5129-38. https://doi.org/10.1016/S0040-4020(99)00174-X
  23. Ivan V, Timothy FJ. Synthesis of marine polycyclic polyethers via endoselective epoxide-opening cascades. Mar Drugs 2010;8:763-809. https://doi.org/10.3390/md8030763
  24. Liu JP. Studies on isolation, structure modification and pharmacological activities of saponins from the leaves and stems of Panax quinquefolium L. cultivated in China. PhD thesis. Shenyang: Shenyang Pharm Univ; 2005 [in Chinese].
  25. Gao LS, Li N, Li X. Alkaline-degradation products of total ginsenosides from leaves and stems of Panax quinquefolium L. J Shenyang Pharm Univ 2007;24: 552-5.
  26. Meng QG, Bi Y, Wang L, Jiang NC, Jiang YT, Zhang JF, Yi ST, Sun HJ. Synthesis, structural determination of a new ocotillol derivative and its epimer. Lett Org Chem 2011;8:682-5. https://doi.org/10.2174/157017811799304377
  27. Zhang L, Guo HM, Li WJ, Gao YJ, Meng QG. (3R,6R,12R,20S,24R)-20, 24-epoxydammarane-3,6,12,25-tetraol. Acta Crystallogr Sect E Struct Rep Online 2011;67:o846. https://doi.org/10.1107/S1600536811008609
  28. Ren YY. Studies on the preparation process and the related substances of pseudo-sapogenin DQ. MS thesis. Jilin: Jilin University; 2012 [in Chinese].
  29. Meng QG, Tan WJ, Hou GG, Zhang XY, Hu XY, Yang F, Bai GJ, Zhu WW, Cai Y, Bi Y. Synthesis and structural characterization of two epimers driven from 20(S)-protopanaxadiol. J Mol Struct 2013;2013:1054-5.
  30. Bi Y, Tian JW, Wang L, Zhao FL, Zhang JF, Wang N, Sun HJ, Meng QG. Synthesis, structural determination and protective effects on cultured anoxia/reoxygen injury myocardiocytes of ocotillol-type derivatives. J Med Plants Res 2011;5:2424-9.
  31. Meng QG, Liu LD, Guo HM, Bi Y, Wang L. (3R,6R,12R,20S,24S)-20,24-epoxydammarane-3,6,12, 25-tetral dihydrate. Acta Crystallogr Sect E Struct Rep Online 2010;66:o3210. https://doi.org/10.1107/S1600536810046362
  32. Zhang GH, Ma C, Zhang JL, Chen JW, Tang QY, He MH, Xu XZ, Jiang NH, Yang SC. Transcriptome analysis of Panax vietnamensis var. Fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 2015;16:159-78. https://doi.org/10.1186/s12864-015-1332-8
  33. Xu YR, Yang JJ, Liu J, Hou GG, Meng QG. Synthesis and crystal structure of ocotillol-type metabolites driven from 20(R)-protopanaxadiol. Acta Crystallogr 2016;C72:498-503.
  34. Yang JJ, Xu YR, Li XL, Zhang KX, Zhang RM, Wang WZ, He XY, Meng QG, Hou GG. Synthesis and crystal structures of two C24 epimeric 3-acetyled 20(R)-ocotillol type sapogenins obtained from 20(R)-protopanaxadiol. J Chem Res 2016;40:235-8. https://doi.org/10.3184/174751916X14579531034854
  35. Li Z, Guo YY, Wu CF, Li X, Wang JH. Protective effects of pseudoginsenoside-$F_{11}$ on scopolamine-induced memory impairment in mice and rats. J Pharm Pharmacol 1999;51:435-40. https://doi.org/10.1211/0022357991772484
  36. Li Z, Wu CF, Pei G, Guo YY, Li X. Antagonistic effect of pseudoginsenoside-$F_{11}$ on the Behavioral actions of morphine in mice. Pharmacol Biochem Behav 2000;66:595-601. https://doi.org/10.1016/S0091-3057(00)00260-4
  37. Li Z, Xu NJ, Wu CF, Ying X, Fan HP, Zhang WB, Sun Y, Pei G. Pseudoginsenoside-F11 attenuates morphine-induced signalling in Chinese hamster ovary-$\mu$ cells. Neuroreport 2001;12:1453-6. https://doi.org/10.1097/00001756-200105250-00031
  38. Hao Y, Yang JY, Wu CF, Wu MF. Pseudoginsenoside-F11 decreases morphineinduced behavioral sensitization and extracellular glutamate levels in the medial. Pharmacol Biochem Behav 2007;86:660-6. https://doi.org/10.1016/j.pbb.2007.02.011
  39. Zhu D. Studies of PF11 on the dependence potential. MS thesis. Shenyang: Shenyang Pharm University; 2004 [in Chinese].
  40. Wu CF, Liu YL, Song M, Liu W, Wang JH, Li X, Yang JY. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacol Biochem Behav 2003;76:103-9. https://doi.org/10.1016/S0091-3057(03)00215-6
  41. Fu KQ, Lin HY, Yoshiaki M, Wu CF, Yang JY, Kyosuke U, Atsumi N. Pseudoginsenoside-F11 inhibits methamphetamine-induced behaviors by regulating dopaminergic and GABAergic neurons in the nucleus accumbens. Psychopharmacology 2016;233:831-40. https://doi.org/10.1007/s00213-015-4159-8
  42. Wang JY, Yang JY, Wang F, Fu SY, Hou Y, Jiang B, Ma J, Song C, Wu CF. Neuroprotective effect of Pseudoginsenoside-F11 on a rat model of Parkinson's disease induced by 6-Hydroxydopamine. Evid Based Complement Alternat Med 2013;2013:1-9.
  43. Wang CM, Liu MY, Wang F, Wei MJ, Wang S, Wu CF, Yang JY. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer's disease. Pharmacol Biochem Behav 2013;106:57-67. https://doi.org/10.1016/j.pbb.2013.03.010
  44. Wang XX, Wang CM, Wang JM, Zhao SQ, Zhang K, Wang JM, Zhang W, Wu CF, Yang JY. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-${\kappa}B$, MAPKs and Akt signaling pathways. Neuropharmacology 2014;79:642-56. https://doi.org/10.1016/j.neuropharm.2014.01.022
  45. Wu GY, Yi JY, Wang PC, Zhang ZJ, Li Z. Pseudoginsenoside F11, a novel partial PPAR agonist, promotes adiponectin oligomerization and secretion in 3T3-L1 Adipocytes. PPAR Res 2013;2013:1-8.
  46. Wang ZJ, Sun L, Peng W, Ma S, Zhu C, Fu FH, Heinbockel T. Ginseg derivatives ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience 2011;195:1-8. https://doi.org/10.1016/j.neuroscience.2011.08.002
  47. Nguyen TT, Matsumoto K, Yamasaki K, Watanabe H. Majonoside-R2 reverses social isolation stress-induced decrease in pentobarbital sleep in mice: possible involvement of neuroactive steroids. Life Sci 1997;61:395-402. https://doi.org/10.1016/S0024-3205(97)00396-2
  48. Nguyen TT, Matsumoto K, Watanable H. The antistress effect of majonoside-R2, a major saponin component of Vietnamese ginseng: neuronal mechanisms of action. Method Find Exp Clin 1998;20:65. https://doi.org/10.1358/mf.1998.20.1.485634
  49. Liu JP. Ameliorative effects of pseudoginsenoside GQ on isoproterenolinduced acute myocardial ischemia in rats. J Jilin Univ (Med. Ed.) 2006;32: 64-7 [in Chinese].
  50. Liu JP, Lu D, Zhao Y, Li PY, Li X. A new semisynthetic ocotillol-type saponin and resuscitation of haemorrhagic shock. J Asian Nat Prod Res 2007;9:103-13. https://doi.org/10.1080/10286020500251741
  51. Jin X, Shen WZ, Jin LF, Jia JY, Li XF, Wang XL, Di X, Zhang HJ, Li PY. Protective effect of pseudo-ginsenoside GQ on doxorubicin-induced acute myocardial injury in rats. J Jilin Univ (Med. Ed.) 2013;39:1164-8 [in Chinese].
  52. Yu C, Fu FH, Jiang YT, Yu X, Zhu M, Han B. Protective effect of ocotillol on acute myocardial injury. Chin Tradit Herbal Drugs 2007;38:576-8 [in Chinese].
  53. Yu C, Fu FH, Yu X, Zhu M. Protective effect of ocotillol on acute myocardial injury induced by LAD in rat. J Mol Cell Cardiol 2007;42:S215.
  54. Han B, Meng QG, Li Q, Zhang JF, Bi Y, Jiang NC. Effect of 20(S)-protopanaxatriol and its epimeric derivatives on myocardial injury induced by isoproterenol. Arzneimittel-Forsch 2011;61:148-52. https://doi.org/10.1055/s-0031-1296181
  55. Wang T, Meng Q, Zhang JF, Bi Y, Jiang NC. Study on the structureefunction relationship of 20(S)-panaxadiol and its epimeric derivatives in myocardial injury induced by isoproterenol. Fitoterapia 2010;81:783-7. https://doi.org/10.1016/j.fitote.2010.04.005
  56. Bi Y, Wang T, Meng QG, Zhang JF, Wang L, Li Q, Zhao FL, Sun HJ. Synthesis and myocardial ischemia protective effect of ocotillol-type derivatives. Rec Nat Prod 2012;6:242-54.
  57. Zhao B, Fu FH, Wei XB, Chen L, Zhang XM. Protective effects of ocotillol on focal cerebral ischemic injury in rats. Chin Pharmacol Bull 2008;24:87-90 [in Chinese].
  58. Fu XY, Kong L, Tang MT, Zhang JQ, Zhou XY, Li G, Wang HB, Fu FH. Protective effect of ocotillol against doxorubicin-induced acute and chronic cardiac injury. Mol Med Rep 2014;9:360-4. https://doi.org/10.3892/mmr.2013.1791
  59. Dai L. Studies on isolation, modification and bioactivities of protopanaxatriol saponins in leaves and stems of panax quinquefolium L. MS thesis. Jilin: Jilin University; 2010 [in Chinese].
  60. Lee SY, Jeong JJ, Le THV, Eun SH, Nguyen MD, Park JH, Kim DH. Ocotillol, a Majonoside $R_2$ metabolite, ameliorates 2,4,6-trinitrobenzenesulfonic acidinduced colitis in mice by restoring the balance of Th17/Treg cells. J Agric Food Chem 2015;63:7024-31. https://doi.org/10.1021/acs.jafc.5b02183
  61. Jeong JJ, Le THV, Lee SY, Eun SH, Nguyen MD, Park JH, Kim DH. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2015;28:700-6. https://doi.org/10.1016/j.intimp.2015.07.025
  62. Bi Y, Ma C, Zhang HY, Zhou ZW, Yang J, Zhang ZL, Meng QG, Lewis PJ, Xu JY. Novel 3-substituted ocotillol-type triterpenoid derivatives as antibacterial candidates. Chem Biol Drug Des 2014;84:489-96. https://doi.org/10.1111/cbdd.12337
  63. Bi Y, Ma C, Zhou ZW, Zhang HY, Zhang XC, Lu J, Meng QG, Lewis PJ, Xu JY. Synthesis and antibacterial evaluation of novel hydrophilic ocotillol-type triterpenoid derivatives from 20(S)-protopanaxadiol. Rec Nat Prod 2015;9:356-68.
  64. Bi Y, Ma C, Zhang TT, Zhang XC, Lu J, Meng QG. Design, synthesis and in vitro NO-releasing activities of ocotillol-type furoxans. Pharmazie 2015;70:213-8.
  65. Bi Y, Yang X, Zhang TT, Liu ZY, Zhang XC, Lu J, Cheng KG, Xu JY, Wang HB, Lewis PJ, et al. Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur J Med Chem 2015;101:71-80. https://doi.org/10.1016/j.ejmech.2015.06.021
  66. Zhou ZW, Ma C, Zhang HY, Bi Y, Chen X, Tian H, Xie XX, Meng QG, Lewis PJ, Xu JY. Synthesis and biological evaluation of novel ocotillol-type triterpenoid derivatives as antibacterial agents. Eur J Med Chem 2013;68:444-53. https://doi.org/10.1016/j.ejmech.2013.07.041
  67. Takao K, Midori T, Eiichiro I, Teruo M, Harukuni T, Hoyoku N, Nguyen MD, Ryoji K, Kazuo Y. Cancer chemopreventive activity of majonoside-R2 from Vietnamese ginseng, Panax vietnamensis. Cancer Lett 1999;147:11-6. https://doi.org/10.1016/S0304-3835(99)00257-8
  68. Tran QL. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity. J Nat Prod 2001;64:456-61. https://doi.org/10.1021/np000393f
  69. Kazuo Y. Bioactive saponins in Vietnamese ginseng, Panax vietnamensis. Pharm Biol 2000;38:16-24. https://doi.org/10.1076/phbi.38.6.16.5956
  70. Wang HB, Yu PF, Bai J, Zhang JQ, Kong L, Zhang FX, Du GY, Pei SQ, Zhang LX, Jiang YT, et al. Ocotillol enhanced the antitumor activity of doxorubicin via p53-dependent apoptosis. Evid Based Compl Alt 2013;2013:1-8.
  71. Van Le TH, Lee SY, Kim TR, Kim T, Kim JY, Kwon SW, Nguyen NK, Park JH, Nguyen MD. Processed Vietnamese ginseng: preliminary results in chemistry and biological activity. J Ginseng Res 2014;38:154-9. https://doi.org/10.1016/j.jgr.2013.11.015
  72. Van Le TH, Lee SY, Lee GJ, Nguyen NK, Park JH, Nguyen MD. Effects of steaming on saponin compositions and anti-proliferative activity of Vietnamese ginseng. J Ginseng Res 2015;39:274-8. https://doi.org/10.1016/j.jgr.2015.01.006
  73. Ma LY, Yang XW. Six new dammarane-type triterpenes from acidic hydrolysate of the stemseleaves of Panax ginseng and their inhibitory-activities against three human cancer cell lines. Phytochem Lett 2015;13:406-12. https://doi.org/10.1016/j.phytol.2015.08.002
  74. Kong L. Protective effect of Pseudoginsenoside F11 on cisplatin induced nephrotoxicity and its molecular mechanism. MS thesis. Shandong: Shandong Tradit Chin Med; 2014 [in Chinese].
  75. Zhang YK. Semi-synthetic ocotillol analogues as selective ABCB1-mediated drug resistance reversal agents. Oncotarget 2015;6:24277-90. https://doi.org/10.18632/oncotarget.4493
  76. Jiang YT, Qiu XL, Ma JB, Lv GY, Wang ZL, Zhang JW, Fu FH, Wang HB. Ameliorative effect of ginsenoside RT5 on CDDP-induced nephrotoxicity. J Wuhan Univ (Nat Sci Ed) 2015;20:343-9. https://doi.org/10.1007/s11859-015-1103-z
  77. Wang JH, Li X. Study on the metabolism of pseudo-ginsenoside F11 in rats. Acta Pharmacol Sin 2001;36:427-31 [in Chinese].
  78. Zhao CF, Liu JP, Zhao Y, Li PY. Study on excretion of pseudo-ginsenoside GQ. China J Chin Mater Med 2008;33:432-5 [in Chinese].
  79. Li L, Chen XY, Li D, Zhong DF. Identification of 20(S)-Protopanaxadiol metabolites in human liver microsomes and human hepatocytes. Drug Metab Dispos 2011;39:472-83. https://doi.org/10.1124/dmd.110.036723
  80. Wu XM, Wang L, Ni YY, Wang H, Wang WY, Meng QG. Study on excretion of 20(S)-protopanaxadiol ocotillol type epimers in rats. China J Chin Mater Med 2014;39:1306-10 [in Chinese].
  81. Wang WY, Wu XM, Wang L, Meng QG, Liu WH. Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLos One 2014;9:1-10.
  82. Wang WY, Wang L, Wu XM, Xu LX, Meng QG, Liu WH. Stereoselective formation and metabolism of 20(S)-protopanaxadiol ocotillol type epimers in vivo and in vitro. Chirality 2015;27:170-209. https://doi.org/10.1002/chir.22407
  83. Wang WY, Ni YY, Che X, Liu WH, Meng QG. Stereoselective oxidation metabolism of 20(S)-protopanaxatriol in human liver microsomes and in rats. Xenobiotica 2014;45:385-95.

Cited by

  1. Design, Synthesis and Antibacterial Evaluation of 3-Substituted Ocotillol-Type Derivatives vol.23, pp.12, 2017, https://doi.org/10.3390/molecules23123320
  2. Enhanced one-step sample pretreatment method for extraction of ginsenosides from rat plasma using tailor-made deep eutectic mixture solvents vol.11, pp.8, 2017, https://doi.org/10.1039/c8ay02433b
  3. Synergistic effect of sea cucumber saponins and EPA-enriched phospholipids on insulin resistance in high-fat diet-induced obese mice vol.10, pp.7, 2019, https://doi.org/10.1039/c9fo01147a
  4. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MSE (HDMSE) for the Comprehensive Profiling and Characterization of Multicomponents from Panax japonicus by UHPLC/I vol.24, pp.15, 2019, https://doi.org/10.3390/molecules24152708
  5. Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal vol.24, pp.16, 2017, https://doi.org/10.3390/molecules24162994
  6. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor vol.64, pp.None, 2017, https://doi.org/10.1016/j.phymed.2019.152899
  7. Synthesis and Structure-Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents vol.11, pp.4, 2017, https://doi.org/10.1021/acsmedchemlett.9b00562
  8. Advances in Research on the Preparation and Biological Activity of Maslinic Acid vol.20, pp.None, 2017, https://doi.org/10.2174/1389557520666200722134208
  9. Panax quinquefolium saponin liposomes prepared by passive drug loading for improving intestinal absorption vol.46, pp.10, 2017, https://doi.org/10.1080/03639045.2020.1820036
  10. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  11. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C vol.235, pp.6, 2020, https://doi.org/10.1515/ncrs-2020-0384
  12. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C vol.235, pp.6, 2020, https://doi.org/10.1515/ncrs-2020-0384
  13. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids vol.25, pp.23, 2017, https://doi.org/10.3390/molecules25235562
  14. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3 vol.236, pp.2, 2021, https://doi.org/10.1515/ncrs-2020-0602
  15. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2 vol.236, pp.3, 2017, https://doi.org/10.1515/ncrs-2020-0603
  16. Design, synthesis and antibacterial evaluation of ocotillol derivatives with polycyclic nitrogen-containing groups vol.13, pp.12, 2017, https://doi.org/10.4155/fmc-2020-0364
  17. Design, Synthesis, and Antibacterial Evaluation of Novel Ocotillol Derivatives and Their Synergistic Effects with Conventional Antibiotics vol.26, pp.19, 2017, https://doi.org/10.3390/molecules26195969
  18. Crystal structure of (8R,10R,14R, Z)-2-((3-Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthre vol.236, pp.6, 2017, https://doi.org/10.1515/ncrs-2021-0248
  19. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3- vol.236, pp.6, 2017, https://doi.org/10.1515/ncrs-2021-0284