DOI QR코드

DOI QR Code

Cell Culture Models of Human Norovirus: the End of the Beginning?

인간노로바이러스의 세포배양 기술개발 : 새로운 시작?

  • Nguyen, Minh Tue (Korea Zoonosis Research Institute and Department of Bioactive Material Sciences, Chonbuk National University) ;
  • Park, Mi-Kyung (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Ha, Sangdo (School of Food Science and Technology, Chung-Ang University) ;
  • Choi, In-Soo (Department of Infectious Disease, College of Veterinary Medicine, Konkuk University) ;
  • Choi, Changsun (Department of Food and Nutrition, Chung-Ang University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute and Department of Bioactive Material Sciences, Chonbuk National University)
  • 응웬황민뒈 (전북대학교 인수공통전염병연구소, 생리활성소재과학과) ;
  • 박미경 (경북대학교 농업생명과학대학 식품공학부) ;
  • 하상도 (중앙대학교 식품공학부) ;
  • 최인수 (건국대학교 수의과대학 수의미생물학교실) ;
  • 최창순 (중앙대학교 식품영양학과) ;
  • 명진종 (전북대학교 인수공통전염병연구소, 생리활성소재과학과)
  • Received : 2017.06.06
  • Accepted : 2017.06.07
  • Published : 2017.06.28

Abstract

Human norovirus (hNoV) infection accounts for the vast majority of virus-mediated gastroenteritis cases worldwide. It causes self-limiting acute illnesses in healthy individuals lasting for a few days, however, in immunocompromised patients, hNoV can establish chronic and potentially fatal infections. Since its discovery in 1968, much effort had been made to develop cell culture and animal infection models to no avail. Only recently, some promising breakthroughs in the development of in vitro infection models have been made. Here, we will contrast and compare those models and discuss what further needs to be done to develop a reliable and robust cell culture model.

인간노로바이러스는 바이러스성 식중독 원인의 대부분을 차지한다. 노로바이러스가 건강한 성인에 감염하면 설사 등의 병변을 몇 일간 일으키다 대부분 별다른 처치 없이도 치유되는 경우가 대부분이다. 그러나 면역기능이 약화된 환자에게 감염한 경우, 만성감염 내지 치명적 감염도 가능한 것으로 보고 되고 있다. 1968년에 처음 노로바이러스가 보고된 이후 세포 감염모델과 소동물감염 모델을 만들고자 하는 시도가 이어져 왔으나 대부분 실패하였다. 그러나 최근들어 세포감염 모델 개발에 있어 주목할 만한 기념비적인 연구들이 이루어졌다 것이 고무적이다 할 수 있다. 이번 총설에서는 새로 개발된 감염 모델들의 특징과 장단점을 살펴보고, 이를 더욱 개선할 수 있는 방향에 대하여 살펴보고자 한다.

Keywords

References

  1. Baltimore D. 1971. Viral genetic systems. Trans. N. Y. Acad. Sci. 33: 327-332. https://doi.org/10.1111/j.2164-0947.1971.tb02600.x
  2. Green KY. 2007. Caliciviridae: the noroviruses, pp. 949-980. In Knipe DM and Howley PM (eds.), Fields virology, 5th ed., vol. 1. Lippincott, Williams & Wilkins, Philadelphia, PA.
  3. Kapikian AZ. 2000. The discovery of the 27-nm Norwalk virus: an historic perspective. J. Infect. Dis. 181 Suppl 2: S295-302. https://doi.org/10.1086/315584
  4. Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM. 1972. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 10: 1075-1081.
  5. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287-290. https://doi.org/10.1126/science.286.5438.287
  6. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, et al. 2014. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet. Infect. Dis. 14: 725-730. https://doi.org/10.1016/S1473-3099(14)70767-4
  7. Teunis PFM, Moe CL, Liu P, Miller SE, Lindesmith L, Baric RS, et al. 2008. Norwalk virus: How infectious is it? J. Med. Virol. 80: 1468-1476. https://doi.org/10.1002/jmv.21237
  8. Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, et al. 2008. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14: 1553-1557. https://doi.org/10.3201/eid1410.080117
  9. Esposito S, Ascolese B, Senatore L, Codeca C. 2014. Pediatric norovirus infection. Eur. J. Clin. Microbiol. Infect. Dis. 33: 285-290. https://doi.org/10.1007/s10096-013-1967-9
  10. Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 14: 1224-1231. https://doi.org/10.3201/eid1408.071114
  11. Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. 2016. Norovirus in symptomatic and asymptomatic individuals: cytokines and viral shedding. Clin. Exp. Immunol. 184: 347-357. https://doi.org/10.1111/cei.12772
  12. Lee RM, Lessler J, Lee RA, Rudolph KE, Reich NG, Perl TM, Cummings DA. 2013. Incubation periods of viral gastroenteritis: a systematic review. BMC Infect. Dis. 13: 446. https://doi.org/10.1186/1471-2334-13-446
  13. Bok K, Green KY. 2012. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 367: 2126-2132. https://doi.org/10.1056/NEJMra1207742
  14. Lopman BA, Adak GK, Reacher MH, Brown DW. 2003. Two epidemiologic patterns of norovirus outbreaks: surveillance in England and wales, 1992-2000. Emerg. Infect. Dis. 9: 71-77. https://doi.org/10.3201/eid0901.020175
  15. Yen C, Wikswo ME, Lopman BA, Vinje J, Parashar UD, Hall AJ. 2011. Impact of an emergent norovirus variant in 2009 on norovirus outbreak activity in the United States. Clin. Infect. Dis. 53: 568-571. https://doi.org/10.1093/cid/cir478
  16. de Wit MA, Koopmans MP, van Duynhoven YT. 2003. Risk factors for norovirus, Sapporo-like virus, and group A rotavirus gastroenteritis. Emerg. Infect. Dis. 9: 1563-1570. https://doi.org/10.3201/eid0912.020076
  17. Phillips G, Tam CC, Rodrigues LC, Lopman B. 2011. Risk factors for symptomatic and asymptomatic norovirus infection in the community. Epidemiol. Infect. 139: 1676-1686. https://doi.org/10.1017/S0950268810002839
  18. Asanaka M, Atmar RL, Ruvolo V, Crawford SE, Neill FH, Estes MK. 2005. Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc. Natl. Acad. Sci. USA 102: 10327-10332. https://doi.org/10.1073/pnas.0408529102
  19. Katayama K, Hansman GS, Oka T, Ogawa S, Takeda N. 2006. Investigation of norovirus replication in a human cell line. Arch. Virol. 151: 1291-1308. https://doi.org/10.1007/s00705-005-0720-9
  20. Lambden PR, Caul EO, Ashley CR, Clarke IN. 1993. Sequence and genome organization of a human small round-structured (Norwalk- like) virus. Science 259: 516-519. https://doi.org/10.1126/science.8380940
  21. Wyatt RG, Dolin R, Blacklow NR, DuPont HL, Buscho RF, Thornhill TS, et al. 1974. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis. 129: 709-714. https://doi.org/10.1093/infdis/129.6.709
  22. Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. 1977. Clinical immunity in acute gastroenteritis caused by norwalk agent. N. Engl. J. Med. 297: 86-89. https://doi.org/10.1056/NEJM197707142970204
  23. Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple-challenge study of host susceptibility to norwalk gastroenteritis in US adults. J. Infect. Dis. 161: 18-21. https://doi.org/10.1093/infdis/161.1.18
  24. Agus SG, Dolin R, Wyatt RG, Tousimis AJ, Northrup RS. 1973. Acute infectious nonbacterial gastroenteritis: Intestinal histopathology: histologic and enzymatic alterations during illness produced by the norwalk agent in man. Ann. Int. Med. 79: 18-25. https://doi.org/10.7326/0003-4819-79-1-18
  25. Jean J, Morales-Rayas R, Anoman MN, Lamhoujeb S. 2011. Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol. 28: 568-572. https://doi.org/10.1016/j.fm.2010.11.012
  26. Park GW, Linden KG, Sobsey MD. 2011. Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. Lett. Appl. Microbiol. 52: 162-167. https://doi.org/10.1111/j.1472-765X.2010.02982.x
  27. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85: 79-87. https://doi.org/10.1099/vir.0.19478-0
  28. Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, et al. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406: 1-11. https://doi.org/10.1016/j.virol.2010.07.001
  29. Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN, Sarker SS, et al. 2013. Lack of norovirus replication and histoblood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg. Infect. Dis. 19: 431-438. https://doi.org/10.3201/eid1903.121029
  30. Papafragkou E, Hewitt J, Park GW, Greening G, Vinje J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8: e63485. https://doi.org/10.1371/journal.pone.0063485
  31. Cubitt WD, Barrett ADT. 1984. Propagation of human candidate calicivirus in cell culture. J. Gen. Virol. 65: 1123-1126. https://doi.org/10.1099/0022-1317-65-6-1123
  32. Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH. 2001. Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am. J. Physiol Cell Physiol. 280: C1540-1554. https://doi.org/10.1152/ajpcell.2001.280.6.C1540
  33. Goke M, Kanai M, Podolsky DK. 1998. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am. J. Physiol. 274: G809-818.
  34. Hughes JH. 1993. Physical and chemical methods for enhancing rapid detection of viruses and other agents. Clin. Microbiol. Rev. 6: 150-175. https://doi.org/10.1128/CMR.6.2.150
  35. Joshi SS, Jackson JD, Sharp JG. 1985. Differentiation inducing effects of butyrate and DMSO on human intestinal tumor cell lines in culture. Cancer. Detect. Prev. 8: 237-245.
  36. Lamartina S, Roscilli G, Rinaudo D, Delmastro P, Toniatti C. 1998. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle. J. Virol. 72: 7653-7658.
  37. Maitreyi RS, Broor S, Kabra SK, Ghosh M, Seth P, Dar L, Prasad AK. 2000. Rapid detection of respiratory viruses by centrifugation enhanced cultures from children with acute lower respiratory tract infections. J. Clin. Virol. 16: 41-47. https://doi.org/10.1016/S1386-6532(99)00075-X
  38. Pinto RM, Diez JM, Bosch A. 1994. Use of the colonic carcinoma cell line CaCo-2 for in vivo amplification and detection of enteric viruses. J. Med. Virol. 44: 310-315. https://doi.org/10.1002/jmv.1890440317
  39. Quaroni A, Tian JQ, Goke M, Podolsky DK. 1999. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am. J. Physiol. 277: G1027-1040.
  40. Seno M, Takao S, Fukuda S, Kanamoto Y. 1991. Enhanced Isolation of influenza virus in conventional plate cell cultures by using low-speed centrifugation from clinical specimens. Am. J. Clin. Pathol. 95: 765-768. https://doi.org/10.1093/ajcp/95.6.765
  41. Svensson L, Finlay BB, Bass D, von Bonsdorff CH, Greenberg HB. 1991. Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J. Virol. 65: 4190-4197.
  42. Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, et al. 2004. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLOS Biol. 2: e432. https://doi.org/10.1371/journal.pbio.0020432
  43. Wobus CE, Thackray LB, Virgin HW. 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80: 5104-5112. https://doi.org/10.1128/JVI.02346-05
  44. Elftman MD, Gonzalez-Hernandez MB, Kamada N, Perkins C, Henderson KS, Nunez G, Wobus CE. 2013. Multiple effects of dendritic cell depletion on murine norovirus infection. J. Gen. Virol. 94: 1761-1768. https://doi.org/10.1099/vir.0.052134-0
  45. Gonzalez-Hernandez MB, Liu T, Payne HC, Stencel-Baerenwald JE, Ikizler M, Yagita H, et al. 2014. Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J. Virol. 88: 6934-6943. https://doi.org/10.1128/JVI.00204-14
  46. Gonzalez-Hernandez MB, Liu T, Blanco LP, Auble H, Payne HC, Wobus CE. 2013. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells. J. Virol. 87: 12685-12693. https://doi.org/10.1128/JVI.02378-13
  47. Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, et al. 2005. A549 Lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for pseudomonas aeruginosa pathogenesis. Infect. Imm. 73: 1129-1140. https://doi.org/10.1128/IAI.73.2.1129-1140.2005
  48. Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC. 2017. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scient. Rep. 7: 45270. https://doi.org/10.1038/srep45270
  49. Honer zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, et al. 2006. Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect. 8: 1813-1825. https://doi.org/10.1016/j.micinf.2006.02.020
  50. LaMarca HL, Ott CM, Honer Zu Bentrup K, Leblanc CL, Pierson DL, Nelson AB, et al. 2005. Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta 26: 709-720. https://doi.org/10.1016/j.placenta.2004.11.003
  51. Long JP, Hughes JH. 2001. Epstein-barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cell Dev. Biol. Anim. 37: 223-230.
  52. Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, et al. 2001. Three-dimensional tissue assemblies: novel models for the study of salmonella enterica serovar typhimurium pathogenesis. Infect. Imm. 69: 7106-7120. https://doi.org/10.1128/IAI.69.11.7106-7120.2001
  53. Zhang S. 2004. Beyond the Petri dish. Nat. Biotechnol. 22: 151-152. https://doi.org/10.1038/nbt0204-151
  54. Nickerson CA, Richter EG, Ott CM. 2007. Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J. Neuroimm. Pharmacol. 2: 26-31. https://doi.org/10.1007/s11481-006-9047-x
  55. Straub TM, Honer zu Bentrup K, Coghlan PO, Dohnalkova A, Mayer BK, Bartholomew RA, et al. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13: 396-403. https://doi.org/10.3201/eid1303.060549
  56. Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, Ozanich RM, et al. 2011. Human norovirus infection of caco-2 cells grown as a 3-dimensional tissue structure. J. Water Health. 9: 225-240. https://doi.org/10.2166/wh.2010.106
  57. Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, Wang Q. 2014. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol. 159: 257-266. https://doi.org/10.1007/s00705-013-1806-4
  58. Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, Reilly MJ, et al. 2007. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol. 81: 3251-3263. https://doi.org/10.1128/JVI.02096-06
  59. Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, et al. 2014. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm. Bowel Dis. 20: 431-443. https://doi.org/10.1097/01.MIB.0000441346.86827.ed
  60. Zhu S, Regev D, Watanabe M, Hickman D, Moussatche N, Jesus DM, et al. 2013. Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathog. 9: e1003592. https://doi.org/10.1371/journal.ppat.1003592
  61. Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D, et al. 2011. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl. Acad. Sci. USA 108:325-330. https://doi.org/10.1073/pnas.1014577107
  62. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346: 755-759. https://doi.org/10.1126/science.1257147
  63. Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P, et al. 2015. Human norovirus culture in B cells. Nat. Protoc. 10: 1939-1947. https://doi.org/10.1038/nprot.2015.121
  64. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. 2011. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249-252. https://doi.org/10.1126/science.1211057
  65. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV. 2011. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245-249. https://doi.org/10.1126/science.1210718
  66. Robinson CM, Jesudhasan PR, Pfeiffer JK. 2014. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell. Host. Microbe. 15: 36-46. https://doi.org/10.1016/j.chom.2013.12.004
  67. Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, et al. 2015. Commensal microbes and interferonlambda determine persistence of enteric murine norovirus infection. Science 347: 266-269. https://doi.org/10.1126/science.1258025
  68. Ha S, Choi IS, Choi C, Myoung J. 2016. Infection models of human norovirus: challenges and recent progress. Arch. Virol. 161: 779-788. https://doi.org/10.1007/s00705-016-2748-4
  69. Grimprel E, Rodrigo C, Desselberger U. 2008. Rotavirus disease: impact of coinfections. Pediat. Infect. Dis. J. 27: S3-S10. https://doi.org/10.1097/INF.0b013e31815eedfa
  70. Wilks J, Beilinson H, Golovkina TV. 2013. Dual role of commensal bacteria in viral infections. Immunol. Rev. 255: 10.1111/imr.12097.
  71. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, et al. 2013. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 87: 9441-9451. https://doi.org/10.1128/JVI.01060-13
  72. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, et al. 2002. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122: 1967-1977. https://doi.org/10.1053/gast.2002.33661
  73. Tan M, Jiang X. 2014. Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert. Rev. Mol. Med. 16: e5. https://doi.org/10.1017/erm.2014.2
  74. Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, et al. 2003. Noroviruses bind to human ABO, Lewis, secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J. Infect. Dis. 188: 19-31. https://doi.org/10.1086/375742
  75. Sestak K. 2014. Role of histo-blood group antigens in primate enteric calicivirus infections. World J. Virol. 3: 18-21. https://doi.org/10.5501/wjv.v3.i3.18
  76. Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185: 1335-1337. https://doi.org/10.1086/339883
  77. Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J. Med. Virol. 77: 116-120. https://doi.org/10.1002/jmv.20423
  78. Karst SM. 2010. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2: 748-781. https://doi.org/10.3390/v2030748
  79. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9: 548-553. https://doi.org/10.1038/nm860
  80. Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J. Infect. Dis. 192: 1071-1077. https://doi.org/10.1086/432546
  81. Zhang X-F, Tan M, Chhabra M, Dai Y-C, Meller J, Jiang X. 2013. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections. PLoS One 8: e69379. https://doi.org/10.1371/journal.pone.0069379
  82. Almagro-Moreno S, Boyd EF. 2010. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut. Microbes. 1: 45-50. https://doi.org/10.4161/gmic.1.1.10386
  83. Bally M, Rydell GE, Zahn R, Nasir W, Eggeling C, Breimer ME, et al. 2012. Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers. Angew. Chem. Int. Ed. Engl. 51: 12020-12024. https://doi.org/10.1002/anie.201205972
  84. Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoen-Clouet N, Svensson L, Le Pendu J, Larson G. 2009. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 19: 309-320. https://doi.org/10.1093/glycob/cwn139
  85. Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N. 2004. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J. Virol. 78: 3817-3826. https://doi.org/10.1128/JVI.78.8.3817-3826.2004
  86. Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT, Lee Y-CJ, et al. 2016. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353: 933-936. https://doi.org/10.1126/science.aaf1220
  87. Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, et al. 2016. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Scientif. Rep. 6: 25017. https://doi.org/10.1038/srep25017
  88. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. 2006. Pathogenesis of a genogroup ii human norovirus in gnotobiotic pigs. J. Virol. 80: 10372-10381. https://doi.org/10.1128/JVI.00809-06
  89. Jung K, Wang Q, Kim Y, Scheuer K, Zhang Z, Shen Q, et al. 2012. The effects of simvastatin or interferon-${\alpha}$ on infectivity of human norovirus using a gnotobiotic pig model for the study of Antivirals. PLoS One 7: e41619. https://doi.org/10.1371/journal.pone.0041619
  90. Bui T, Kocher J, Li Y, Wen K, Li G, Liu F, et al. 2013. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. J. Gen. Virol. 94: 2005-2016. https://doi.org/10.1099/vir.0.054080-0
  91. Brown JR, Gilmour K, Breuer J. 2016. Norovirus Infections Occur in B-Cell-Deficient Patients. Clin. Infect. Dis. 62: 1136-1138. https://doi.org/10.1093/cid/ciw060
  92. Green KY. 2016. Editorial commentary: noroviruses and B cells. Clin. Infect. Dis. 62: 1139-1140. https://doi.org/10.1093/cid/ciw063
  93. Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. 2015. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90: 43-56.
  94. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353: 1387-1393. https://doi.org/10.1126/science.aaf5211
  95. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80: 5059-5064. https://doi.org/10.1128/JVI.80.10.5059-5064.2006
  96. Monaghan P, Simpson J, Murphy C, Durand S, Quan M, Alexandersen S. 2005. Use of confocal immunofluorescence microscopy to localize viral nonstructural proteins and potential sites of replication in pigs experimentally infected with foot-andmouth disease virus. J. Virol. 79: 6410-6418. https://doi.org/10.1128/JVI.79.10.6410-6418.2005
  97. Paddock SW. 1999. Confocal Microscopy: Methods and Protocols, vol. 122, Humana Press, Totowa (Meth Mol Biol).
  98. Hofmann AF. 2007. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6: 15-27.
  99. Hofmann AF. 1977. Enterohepatic circulation of bile acids and biliary lipid secretion. Minerva Med. 68: 3011-3017.
  100. Ruvoen-Clouet N, Belliot G, Le Pendu J. 2013. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev. Med. Virol. 23: 355-366. https://doi.org/10.1002/rmv.1757
  101. Thorven M, Grahn A, Hedlund K-O, Johansson H, Wahlfrid C, Larson G, Svensson L. 2005. A homozygous nonsense mutation ($428G{\rightarrow}A$) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79: 15351-15355. https://doi.org/10.1128/JVI.79.24.15351-15355.2005
  102. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. 1995. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270: 4640-4649. https://doi.org/10.1074/jbc.270.9.4640