DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Sargassum patens C. Agardh Ethanol Extract in LPS-induced RAW264.7 Cells and Mouse Ear Edema

LPS로 유도된 RAW 264.7 cell과 마우스 귀 부종 모델을 통한 쌍발이 모자반 에탄올 추출물의 항염증 효과

  • Kim, Min-Ji (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Min-Ju (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Park, Sun-Hee (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Choi, Hyeun-Deok (Institute of Fisheries Sciences, Pukyong National University) ;
  • Park, So-Yeong (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Ji-Hyun (Institute of Fisheries Sciences, Pukyong National University) ;
  • Jang, Mi-Ran (Health Functional Food Policy Division, Ministry of Food and Drug Safety) ;
  • Im, Moo-Hyeog (Department of Food Science and Biotechnology, Daegu University) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology/Institute of Food Science, Pukyong National University)
  • 김민지 (부경대학교 식품공학과/식품연구소) ;
  • 김민주 (부경대학교 식품공학과/식품연구소) ;
  • 김꽃봉우리 (부경대학교 식품공학과/식품연구소) ;
  • 박선희 (부경대학교 식품공학과/식품연구소) ;
  • 최현덕 (부경대학교 수산과학연구소) ;
  • 박소영 (부경대학교 식품공학과/식품연구소) ;
  • 김지현 (부경대학교 수산과학연구소) ;
  • 장미란 (식품의약품안전처 건강기능식품정책과) ;
  • 임무혁 (대구대학교 식품공학과) ;
  • 안동현 (부경대학교 식품공학과/식품연구소)
  • Received : 2016.10.05
  • Accepted : 2017.01.14
  • Published : 2017.06.28

Abstract

The anti-inflammatory effect of Sargassum patens C. Agardh ethanol extract (SPEE) was examined based on the lipopolysaccharide (LPS)-induced inflammatory response in this study. SPEE treatment was not cytotoxic to macrophages compared to the control. The production of NO was suppressed by SPEE by approximately 28% at $100{\mu}g/ml$, and levels of interleukin-6, tumor necrosis $factor-{\alpha}$, and $interleukin-1{\beta}$ decreased in a dose-dependent manner. In addition, the expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ was suppressed by SPEE treatment. In vivo, croton oil-induced mouse ear edema was attenuated by SPEE and the infiltration of mast cells into the tissue decreased. Based on these results, SPEE inhibits the release of LPS-induced pro-inflammatory cytokines and mediators, suggesting that SPEE is a potential agent for anti-inflammatory therapies.

본 연구에서는 쌍발이 모자반의 항염증 효과를 알아보기 위해 LPS에 의해 염증반응이 유도된 RAW 264.7 세포에 대한 쌍발이 모자반 에탄올 추출물의 항염증 효과를 살펴보았다. 세포 내 염증매개성 cytokine (IL-6, $TNF-{\alpha}$$IL-1{\beta}$) 분비량의 경우 농도 의존적인 감소 효과를 보였다. 또한 추출물이 iNOS, COX-2, $NF-{\kappa}B$ 및 MAPKs 발현 억제에 미치는 효과를 알아본 결과, LPS 단독처리구에 의해 각 단백질의 발현량이 현저히 증가하였으나, $50{\mu}g/ml$ 이상의 농도로 추출물을 처리하였을 때 그 발현량이 효과적으로 감소하는 것을 확인할 수가 있었다. 귀 부종 억제 효과 및 조직 관찰을 수행한 결과, 추출물 250 mg/kg 농도에서 prednisolone 50 mg/kg 처리보다 귀 부종이 다소 감소함을 보였으며, 조직관찰 결과 쌍발이 모자반 에탄올 추출물을 처리함으로써 귀 조직의 경피 및 진피 두께가 얇아지고, 조직 내 mast cell 침윤을 현저히 억제함을 보였다. 쌍발이 모자반 에탄올이 보이는 항염증 효과는 해조류 에탄올 추출물 유래 polyphenol 계열의 화합물의 영향이 크다고 생각되며 현재까지 쌍발이 모자반 내의 항염증 효능 물질에 관한 연구는 보고되지 않고 있다. 따라서 본 논문의 결과를 바탕으로 향후 유효성분에 관한 분리 연구가 진행된다면 쌍발이 모자반 에탄올 추출물의 천연 염증 치료 소재로 이용될 가치가 충분할 것으로 사료된다.

Keywords

References

  1. Lee ST, Jeong YR, Ha MH, Kim SH, Byun MW, Jo SK. 2000. Induction of nitric oxide and TNF-${\alpha}$ by herbal plant extract in mouse macrophage. J. Korean Soc. Food Sci. Nutr. 29: 342-348.
  2. Ljung T, Lundberg S, Varsanyi M, Ohansson C, Schmidt PT, Herulf M, et al. 2006. Rectal nitric oxide as biomaker in the treatment of inflammatory bowel disease: responders versus non-responders. World Gastroenterol. 12: 3386-3392. https://doi.org/10.3748/wjg.v12.i21.3386
  3. Kang BK, Kim KBWR, Kim MJ, Bark SW, Pak WM, Kim BR, et al. 2014. Anti-inflammatory activity of an ethanol extract of Laminaria japonica root on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. Korean J. Food Sci. Technol. 46: 729-733. https://doi.org/10.9721/KJFST.2014.46.6.729
  4. Kim DH, Park SJ, Jung JY, Kim SC, Byun SH. 2009. Anti-inflammatory effects of the aqueous extract of Hwangnyenhaedoktang in LPS-activated macrophage cells. Korean J. Herbol. 24: 39-47.
  5. Lim HR, Shin SW. 2010. Effects of the essential oil components from Ligusticum chuanxiong on proinflammatory mediators of RAW264.7 macrophage cells. Korean Sci. Pharm. 16: 259-264.
  6. Lee TH, Kwak HB, Kim HH, Lee ZH, Chung DK, Baek NI, et al. 2007. Methanol extracts of Stewartia koreana inhibit cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappaB trans activation in LPS-activated RAW 264.7 cells. Mol. Cells. 23: 398-404.
  7. Bishop-Bailey D, Calatayud S, Warner TD, Hla T, Mitchell JA. 2002. Prostaglandins and the regulation of tumor growth. J. Environ. Pathol. Tox. Oncol. 21: 93-101.
  8. Ghosh S, Hayden HS. 2008. New regulators of NF-${\kappa}B$ in inflammation. Nat. Rev. Immunol. 8: 837-848. https://doi.org/10.1038/nri2423
  9. Majdalawieh A, Ro HS. 2010. Regulation of $I{\kappa}B{\alpha}$ function and NF-${\kappa}B$ signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm. 2010: 823-821.
  10. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. 1996. Cytokines and nitric oxides in islet inflammation and diabetes. Proc. Soc. Exp. Biol. Med. 211: 24-32. https://doi.org/10.3181/00379727-211-43950D
  11. Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia Kurome. J. Antimicrob. Chemother. 50: 889-893. https://doi.org/10.1093/jac/dkf222
  12. See Jh, Kim ND, Choi JS, Kim YJ, Moon YH, Lim SY, et al. 1998. Inhibitory effects of the methanolic extract of an edible brown alga, Ecklonia stolonifera and its component, phloroglucino on aflatoxin B1 mutagenicity in vitro (Ames test) and on benzo(a) pyrene or N-methyl N-nitrosourea clastogenicity in vivo (mouse micronucleus test). Nat. Prod. Sci. 4: 105-114.
  13. Kim HS, Kim GJ. 1998. Effects of the feeding Hizikia fusiforme (Harvey) O kamura on lipid composition of serum in dietary hyperlipidemic rats. J. Korean Soc. Food Sci. Nutr. 27: 718-723.
  14. Halliwell B, Gutteridge JMC. 1999. Antioxidant defenses. In Free radicals in Biology and Medicine. 3rd ed. Oxford Science Publications, Oxford, UK. pp. 105-159.
  15. Kim MJ, Bae NY, Kim KBWR, Park JH, Park SH, Choi JS, et al. 2016. Anti-inflammatory effect of grateloupia imbricata holmes ethanol extract on LPS-induced RAW 264.7 cells. J. Korean Soc. Food Sci. Nutr. 5: 181-187.
  16. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  17. Jeong DH, Kim KBWR, Kim MJ, Kang BK, Bark SW, Pak WM, et al. 2014. Anti-inflammatory effect of ethanol extract from Sargassum fulvellum on lipopolysaccharide induced inflammatory responses in RAW 264.7 cells and mice ears. J. Korean Soc. Food Sci. Nutr. 43: 1158-1165. https://doi.org/10.3746/jkfn.2014.43.8.1158
  18. Park SG, Jegal KH, Jung JY, Back YD, Byun SH, Kim YW, et al. 2014. Leonuri fructus ameliorates acute inflammation via the inhibition of NF-${\kappa}B$-mediated nitric oxide and pro-inflammatory cytokine production. Korean J. Orient. Physiol. Pathol. 28: 178-185.
  19. Moon JH, Go H, Shin SM, Kim KT. 2013. Anti-inflammatory effect of extracts from Ligustrum obtusifolium S. Fruits in RAW 264.7 macrophages. J. Soc. Korean Med. Diagn. 17: 263-273.
  20. Masters SL, Simon A, Aksentijevich I, Kastner DL. 2009. Horror auto-inflammaticus: the molecular pathophysiology of autoinflammatory disease. Ann. Rev. Immunol. 27: 621-668. https://doi.org/10.1146/annurev.immunol.25.022106.141627
  21. Yun HY, Dawson VL, Dawson TM. 1996. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10: 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  22. Duerksen-Hughes PJ, Day D, Laster SM, Zacharidase NA, Aquino L, Gooding LR. 1992. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. Immuno. 149: 2-14.
  23. Celec P. 2004. Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed. Pharmacother. 58: 365-371. https://doi.org/10.1016/j.biopha.2003.12.015
  24. Eum WS, Lee KJ, Kim DW, Lim SS, Kang IJ, Park J, et al. 2013. Anti-inflammatory effects of extracts from Caesalpinia sappan L. on skin inflammation. J. Korean Soc. Food Sci. Nutr. 42: 1513-1517. https://doi.org/10.3746/jkfn.2013.42.9.1513
  25. Hahn DH, Sur BJ, Han DO, Park JH, Jung ET, Lee HJ, et al. 2008. Anti-inflammatory activity of dandelion in mice. Korean J. Ori. Med. Physiol. Phthol. 22: 810-814.
  26. Tete S, Tripodi D, Rosati M, Conti F, Maccauro G, Saggini A, et al. 2008. The role of mast cells in innate and adaptive immunity. Life Sci. J. 18: 891-896. https://doi.org/10.5352/JLS.2008.18.6.891

Cited by

  1. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review vol.17, pp.10, 2017, https://doi.org/10.3390/md17100590
  2. Pharmacological and natural products diversity of the brown algae genus Sargassum vol.10, pp.42, 2017, https://doi.org/10.1039/d0ra03576a