DOI QR코드

DOI QR Code

Properties of Antimicrobial Substances Produced by Bacillus species Isolated from Rice Straw

볏짚에서 분리한 Bacillus 균주들이 분비하는 항균물질들의 특성들

  • Liu, Xiaoming (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Yao, Zhuang (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Shim, Jae Min (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Lee, Kang Wook (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Kim, Hyun-Jin (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Kim, Jeong Hwan (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
  • 류샤오밍 (경상대학교 대학원 응용생명과학부 (BK21 Plus)) ;
  • 야오좡 (경상대학교 대학원 응용생명과학부 (BK21 Plus)) ;
  • 심재민 (경상대학교 대학원 응용생명과학부 (BK21 Plus)) ;
  • 이강욱 (경상대학교 대학원 응용생명과학부 (BK21 Plus)) ;
  • 김현진 (경상대학교 대학원 응용생명과학부 (BK21 Plus)) ;
  • 김정환 (경상대학교 대학원 응용생명과학부 (BK21 Plus))
  • Received : 2016.11.14
  • Accepted : 2017.05.15
  • Published : 2017.06.28

Abstract

Two hundred bacilli were isolated from rice straw, and 3 strains showing strong inhibitory activities against Bacillus cereus ATCC14579 were selected for further analyses. RSC15 was identified as B. licheniforms, and RSC26 and RSC42 were identified as B. amyloliquefaciens by molecular identification methods. The inhibitory activities were heat stable, and half of the activity was retained for 20 min at $100^{\circ}C$. SDS-PAGE analyses of the culture supernatant indicated that 2 different kinds of antibacterial substances were present with sizes below 3.5 kDa. Antibacterial substances produced by B. licheniformis RSC15 were partially purified by column chromatography, and the specific activity increased from 955.0 AU/mg to 6,400 AU/mg.

볏짚으로부터 200 bacilli 균주들이 분리되었고 이중 3 균주는 Bacillus cereus ATCC1457를 강력히 저해하였다. 분자생물학적 방법들을 사용하여 이들을 동정한 결과 RSC15는 B. licheniforms로 RSC26과 RSC42는 B. amyloliquefaciens들로 확인되었다. 항균물질들은 내열성을 지녀서 $100^{\circ}C$ 20분 처리 후에도 활성의 절반이 유지되었다. 배양상등액의 SDS-PAGE 분석결과 2종의 다른 항세균물질들이 확인 되었고 이들은 3.5 kDa 이하였다. 컬럼크로마토그래피 방법들을 사용하여 B. licheniformis RSC15가 만드는 항세균물질들을 부분정제한 결과 비활성은 955.0 AU/mg에서 6,400 AU/mg으로 증가하였다.

Keywords

References

  1. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  2. Lee JJ, Lee YM, Chang HC, Lee MY. 2009. Antioxidative effects of doenjang fermented using Bacillus subtilis DJI. Korean J. Food Preserv. 16: 554-561.
  3. Lee HA, Kim JH. 2012. Isolation of Bacillus amyloliquefaciens strains with antifungal activities from meju. Prev. Nutr. Food Sci. 17: 64-70. https://doi.org/10.3746/pnf.2012.17.1.064
  4. Galvez A, Abriouel H, Lopez RL, Omar NB. 2007. Bacteriocin-based strategies for food biopreservation. Food Microbiol. 120: 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  5. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  6. Kindoli S, Lee HA, Kim JH. 2012. Properties of BacW42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang. J. Microbiol. Biotechnol. 22: 1092-1100. https://doi.org/10.4014/jmb.1110.10002
  7. Liu X, Shim JM, Yao Z, Lee JY, Lee KW, Kim HJ, et al. 2016. Properties of antimicrobial substances produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8. Microbiol. Biotechnol. Lett. 44: 9-18. https://doi.org/10.4014/mbl.1509.09008
  8. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  9. Thaniyavarn J, Roongsawang N, Kameyama T, Haruki M, Imanaka T, Morikawa M, et al. 2003. Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci. Biotechnol. Biochem. 67: 1239-1244. https://doi.org/10.1271/bbb.67.1239
  10. Kalai-Grami L, Karkouch I, Naili O, Slimene IB, Elkahoui S, Zekri RB, et al. 2016. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. J. Basic Microbiol. 56: 864-871. https://doi.org/10.1002/jobm.201500683
  11. From C, Hormazabal V, Granum PE. 2007. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int. J. Food Microbiol. 115: 319-324. https://doi.org/10.1016/j.ijfoodmicro.2006.11.005
  12. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH. 2008. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150: 289-303. https://doi.org/10.1007/s12010-008-8153-z
  13. Compaore CS, Nielsen DS, Ouoba LI, Berner TS, Nielsen KF, Sawadogo-Lingani H, et al. 2013. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int. J. Food Microbiol. 162: 297-307. https://doi.org/10.1016/j.ijfoodmicro.2013.01.013
  14. Kim PI, Ryu J, Kim YH, ChI YT. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145.
  15. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C. 2000. Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J. Nat. Prod. 63: 1492-1496. https://doi.org/10.1021/np000169q
  16. Spelhaug SR, Harlander SK. 1989. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous. J. Food Protec. 52: 856-862. https://doi.org/10.4315/0362-028X-52.12.856
  17. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888. https://doi.org/10.1111/j.1365-2672.2004.02513.x
  18. Martinez AM, Delgado OD, Breccia JD, Baigori MD, Sineriz F. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395. https://doi.org/10.1007/s00792-002-0269-4
  19. Liu X, Lee JY, Jeong SJ, Cho KM, Kim GM, Shin JH, et al. 2015. Properties of a bacteriocin produced by Bacillus subtilis EMD4 isolated from ganjang (soy sauce). J. Microbiol. Biotechnol. 25: 1493-1501. https://doi.org/10.4014/jmb.1502.02037
  20. Kwon GH, Lee HA, Park JY, Kim JS, Lim JK, Park CS, et al. 2009. Development of a RAPD-PCR method for identification of Bacillus species isolated from cheonggukjang. Int. J. Food Microbiol. 129: 282-287. https://doi.org/10.1016/j.ijfoodmicro.2008.12.013
  21. Schagger H. 2006. Tricine-SDS-PAGE. Nature Protocols 1: 16-22. https://doi.org/10.1038/nprot.2006.4
  22. Mora I, Cabrefiga J, Montesinos E. 2011. Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol. 14: 213-223.